1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
use std::cmp;
use std::fmt;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::u8;

use memchr::{memchr, memchr2, memchr3};

use crate::ahocorasick::MatchKind;
use crate::packed;
use crate::Match;

/// A candidate is the result of running a prefilter on a haystack at a
/// particular position. The result is either no match, a confirmed match or
/// a possible match.
///
/// When no match is returned, the prefilter is guaranteeing that no possible
/// match can be found in the haystack, and the caller may trust this. That is,
/// all correct prefilters must never report false negatives.
///
/// In some cases, a prefilter can confirm a match very quickly, in which case,
/// the caller may use this to stop what it's doing and report the match. In
/// this case, prefilter implementations must never report a false positive.
/// In other cases, the prefilter can only report a potential match, in which
/// case the callers must attempt to confirm the match. In this case, prefilter
/// implementations are permitted to return false positives.
#[derive(Clone, Debug)]
pub enum Candidate {
    None,
    Match(Match),
    PossibleStartOfMatch(usize),
}

impl Candidate {
    /// Convert this candidate into an option. This is useful when callers
    /// do not distinguish between true positives and false positives (i.e.,
    /// the caller must always confirm the match in order to update some other
    /// state).
    pub fn into_option(self) -> Option<usize> {
        match self {
            Candidate::None => None,
            Candidate::Match(ref m) => Some(m.start()),
            Candidate::PossibleStartOfMatch(start) => Some(start),
        }
    }
}

/// A prefilter describes the behavior of fast literal scanners for quickly
/// skipping past bytes in the haystack that we know cannot possibly
/// participate in a match.
pub trait Prefilter:
    Send + Sync + RefUnwindSafe + UnwindSafe + fmt::Debug
{
    /// Returns the next possible match candidate. This may yield false
    /// positives, so callers must confirm a match starting at the position
    /// returned. This, however, must never produce false negatives. That is,
    /// this must, at minimum, return the starting position of the next match
    /// in the given haystack after or at the given position.
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate;

    /// A method for cloning a prefilter, to work-around the fact that Clone
    /// is not object-safe.
    fn clone_prefilter(&self) -> Box<dyn Prefilter>;

    /// Returns the approximate total amount of heap used by this prefilter, in
    /// units of bytes.
    fn heap_bytes(&self) -> usize;

    /// Returns true if and only if this prefilter never returns false
    /// positives. This is useful for completely avoiding the automaton
    /// when the prefilter can quickly confirm its own matches.
    ///
    /// By default, this returns true, which is conservative; it is always
    /// correct to return `true`. Returning `false` here and reporting a false
    /// positive will result in incorrect searches.
    fn reports_false_positives(&self) -> bool {
        true
    }

    /// Returns true if and only if this prefilter may look for a non-starting
    /// position of a match.
    ///
    /// This is useful in a streaming context where prefilters that don't look
    /// for a starting position of a match can be quite difficult to deal with.
    ///
    /// This returns false by default.
    fn looks_for_non_start_of_match(&self) -> bool {
        false
    }
}

impl<'a, P: Prefilter + ?Sized> Prefilter for &'a P {
    #[inline]
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        (**self).next_candidate(state, haystack, at)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        (**self).clone_prefilter()
    }

    fn heap_bytes(&self) -> usize {
        (**self).heap_bytes()
    }

    fn reports_false_positives(&self) -> bool {
        (**self).reports_false_positives()
    }
}

/// A convenience object for representing any type that implements Prefilter
/// and is cloneable.
#[derive(Debug)]
pub struct PrefilterObj(Box<dyn Prefilter>);

impl Clone for PrefilterObj {
    fn clone(&self) -> Self {
        PrefilterObj(self.0.clone_prefilter())
    }
}

impl PrefilterObj {
    /// Create a new prefilter object.
    pub fn new<T: Prefilter + 'static>(t: T) -> PrefilterObj {
        PrefilterObj(Box::new(t))
    }

    /// Return the underlying prefilter trait object.
    pub fn as_ref(&self) -> &dyn Prefilter {
        &*self.0
    }
}

/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator via, e.g., `find_iter`, is treated as a single search.)
#[derive(Clone, Debug)]
pub struct PrefilterState {
    /// The number of skips that has been executed.
    skips: usize,
    /// The total number of bytes that have been skipped.
    skipped: usize,
    /// The maximum length of a match. This is used to help determine how many
    /// bytes on average should be skipped in order for a prefilter to be
    /// effective.
    max_match_len: usize,
    /// Once this heuristic has been deemed permanently ineffective, it will be
    /// inert throughout the rest of its lifetime. This serves as a cheap way
    /// to check inertness.
    inert: bool,
    /// The last (absolute) position at which a prefilter scanned to.
    /// Prefilters can use this position to determine whether to re-scan or
    /// not.
    ///
    /// Unlike other things that impact effectiveness, this is a fleeting
    /// condition. That is, a prefilter can be considered ineffective if it is
    /// at a position before `last_scan_at`, but can become effective again
    /// once the search moves past `last_scan_at`.
    ///
    /// The utility of this is to both avoid additional overhead from calling
    /// the prefilter and to avoid quadratic behavior. This ensures that a
    /// prefilter will scan any particular byte at most once. (Note that some
    /// prefilters, like the start-byte prefilter, do not need to use this
    /// field at all, since it only looks for starting bytes.)
    last_scan_at: usize,
}

impl PrefilterState {
    /// The minimum number of skip attempts to try before considering whether
    /// a prefilter is effective or not.
    const MIN_SKIPS: usize = 40;

    /// The minimum amount of bytes that skipping must average, expressed as a
    /// factor of the multiple of the length of a possible match.
    ///
    /// That is, after MIN_SKIPS have occurred, if the average number of bytes
    /// skipped ever falls below MIN_AVG_FACTOR * max-match-length, then the
    /// prefilter outed to be rendered inert.
    const MIN_AVG_FACTOR: usize = 2;

    /// Create a fresh prefilter state.
    pub fn new(max_match_len: usize) -> PrefilterState {
        PrefilterState {
            skips: 0,
            skipped: 0,
            max_match_len,
            inert: false,
            last_scan_at: 0,
        }
    }

    /// Create a prefilter state that always disables the prefilter.
    pub fn disabled() -> PrefilterState {
        PrefilterState {
            skips: 0,
            skipped: 0,
            max_match_len: 0,
            inert: true,
            last_scan_at: 0,
        }
    }

    /// Update this state with the number of bytes skipped on the last
    /// invocation of the prefilter.
    #[inline]
    fn update_skipped_bytes(&mut self, skipped: usize) {
        self.skips += 1;
        self.skipped += skipped;
    }

    /// Updates the position at which the last scan stopped. This may be
    /// greater than the position of the last candidate reported. For example,
    /// searching for the "rare" byte `z` in `abczdef` for the pattern `abcz`
    /// will report a candidate at position `0`, but the end of its last scan
    /// will be at position `3`.
    ///
    /// This position factors into the effectiveness of this prefilter. If the
    /// current position is less than the last position at which a scan ended,
    /// then the prefilter should not be re-run until the search moves past
    /// that position.
    #[inline]
    fn update_at(&mut self, at: usize) {
        if at > self.last_scan_at {
            self.last_scan_at = at;
        }
    }

    /// Return true if and only if this state indicates that a prefilter is
    /// still effective.
    ///
    /// The given pos should correspond to the current starting position of the
    /// search.
    #[inline]
    pub fn is_effective(&mut self, at: usize) -> bool {
        if self.inert {
            return false;
        }
        if at < self.last_scan_at {
            return false;
        }
        if self.skips < PrefilterState::MIN_SKIPS {
            return true;
        }

        let min_avg = PrefilterState::MIN_AVG_FACTOR * self.max_match_len;
        if self.skipped >= min_avg * self.skips {
            return true;
        }

        // We're inert.
        self.inert = true;
        false
    }
}

/// A builder for constructing the best possible prefilter. When constructed,
/// this builder will heuristically select the best prefilter it can build,
/// if any, and discard the rest.
#[derive(Debug)]
pub struct Builder {
    count: usize,
    ascii_case_insensitive: bool,
    start_bytes: StartBytesBuilder,
    rare_bytes: RareBytesBuilder,
    packed: Option<packed::Builder>,
}

impl Builder {
    /// Create a new builder for constructing the best possible prefilter.
    pub fn new(kind: MatchKind) -> Builder {
        let pbuilder = kind
            .as_packed()
            .map(|kind| packed::Config::new().match_kind(kind).builder());
        Builder {
            count: 0,
            ascii_case_insensitive: false,
            start_bytes: StartBytesBuilder::new(),
            rare_bytes: RareBytesBuilder::new(),
            packed: pbuilder,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    pub fn ascii_case_insensitive(mut self, yes: bool) -> Builder {
        self.ascii_case_insensitive = yes;
        self.start_bytes = self.start_bytes.ascii_case_insensitive(yes);
        self.rare_bytes = self.rare_bytes.ascii_case_insensitive(yes);
        self
    }

    /// Return a prefilter suitable for quickly finding potential matches.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    pub fn build(&self) -> Option<PrefilterObj> {
        // match (self.start_bytes.build(), self.rare_bytes.build()) {
        match (self.start_bytes.build(), self.rare_bytes.build()) {
            // If we could build both start and rare prefilters, then there are
            // a few cases in which we'd want to use the start-byte prefilter
            // over the rare-byte prefilter, since the former has lower
            // overhead.
            (prestart @ Some(_), prerare @ Some(_)) => {
                // If the start-byte prefilter can scan for a smaller number
                // of bytes than the rare-byte prefilter, then it's probably
                // faster.
                let has_fewer_bytes =
                    self.start_bytes.count < self.rare_bytes.count;
                // Otherwise, if the combined frequency rank of the detected
                // bytes in the start-byte prefilter is "close" to the combined
                // frequency rank of the rare-byte prefilter, then we pick
                // the start-byte prefilter even if the rare-byte prefilter
                // heuristically searches for rare bytes. This is because the
                // rare-byte prefilter has higher constant costs, so we tend to
                // prefer the start-byte prefilter when we can.
                let has_rarer_bytes =
                    self.start_bytes.rank_sum <= self.rare_bytes.rank_sum + 50;
                if has_fewer_bytes || has_rarer_bytes {
                    prestart
                } else {
                    prerare
                }
            }
            (prestart @ Some(_), None) => prestart,
            (None, prerare @ Some(_)) => prerare,
            (None, None) if self.ascii_case_insensitive => None,
            (None, None) => self
                .packed
                .as_ref()
                .and_then(|b| b.build())
                .map(|s| PrefilterObj::new(Packed(s))),
        }
    }

    /// Add a literal string to this prefilter builder.
    pub fn add(&mut self, bytes: &[u8]) {
        self.count += 1;
        self.start_bytes.add(bytes);
        self.rare_bytes.add(bytes);
        if let Some(ref mut pbuilder) = self.packed {
            pbuilder.add(bytes);
        }
    }
}

/// A type that wraps a packed searcher and implements the `Prefilter`
/// interface.
#[derive(Clone, Debug)]
struct Packed(packed::Searcher);

impl Prefilter for Packed {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        self.0.find_at(haystack, at).map_or(Candidate::None, Candidate::Match)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        self.0.heap_bytes()
    }

    fn reports_false_positives(&self) -> bool {
        false
    }
}

/// A builder for constructing a rare byte prefilter.
///
/// A rare byte prefilter attempts to pick out a small set of rare bytes that
/// occurr in the patterns, and then quickly scan to matches of those rare
/// bytes.
#[derive(Clone, Debug)]
struct RareBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// A set of rare bytes, indexed by byte value.
    rare_set: ByteSet,
    /// A set of byte offsets associated with bytes in a pattern. An entry
    /// corresponds to a particular bytes (its index) and is only non-zero if
    /// the byte occurred at an offset greater than 0 in at least one pattern.
    ///
    /// If a byte's offset is not representable in 8 bits, then the rare bytes
    /// prefilter becomes inert.
    byte_offsets: RareByteOffsets,
    /// Whether this is available as a prefilter or not. This can be set to
    /// false during construction if a condition is seen that invalidates the
    /// use of the rare-byte prefilter.
    available: bool,
    /// The number of bytes set to an active value in `byte_offsets`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

/// A set of bytes.
#[derive(Clone, Copy)]
struct ByteSet([bool; 256]);

impl ByteSet {
    fn empty() -> ByteSet {
        ByteSet([false; 256])
    }

    fn insert(&mut self, b: u8) -> bool {
        let new = !self.contains(b);
        self.0[b as usize] = true;
        new
    }

    fn contains(&self, b: u8) -> bool {
        self.0[b as usize]
    }
}

impl fmt::Debug for ByteSet {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut bytes = vec![];
        for b in 0..=255 {
            if self.contains(b) {
                bytes.push(b);
            }
        }
        f.debug_struct("ByteSet").field("set", &bytes).finish()
    }
}

/// A set of byte offsets, keyed by byte.
#[derive(Clone, Copy)]
struct RareByteOffsets {
    /// Each entry corresponds to the maximum offset of the corresponding
    /// byte across all patterns seen.
    set: [RareByteOffset; 256],
}

impl RareByteOffsets {
    /// Create a new empty set of rare byte offsets.
    pub fn empty() -> RareByteOffsets {
        RareByteOffsets { set: [RareByteOffset::default(); 256] }
    }

    /// Add the given offset for the given byte to this set. If the offset is
    /// greater than the existing offset, then it overwrites the previous
    /// value and returns false. If there is no previous value set, then this
    /// sets it and returns true.
    pub fn set(&mut self, byte: u8, off: RareByteOffset) {
        self.set[byte as usize].max =
            cmp::max(self.set[byte as usize].max, off.max);
    }
}

impl fmt::Debug for RareByteOffsets {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut offsets = vec![];
        for off in self.set.iter() {
            if off.max > 0 {
                offsets.push(off);
            }
        }
        f.debug_struct("RareByteOffsets").field("set", &offsets).finish()
    }
}

/// Offsets associated with an occurrence of a "rare" byte in any of the
/// patterns used to construct a single Aho-Corasick automaton.
#[derive(Clone, Copy, Debug)]
struct RareByteOffset {
    /// The maximum offset at which a particular byte occurs from the start
    /// of any pattern. This is used as a shift amount. That is, when an
    /// occurrence of this byte is found, the candidate position reported by
    /// the prefilter is `position_of_byte - max`, such that the automaton
    /// will begin its search at a position that is guaranteed to observe a
    /// match.
    ///
    /// To avoid accidentally quadratic behavior, a prefilter is considered
    /// ineffective when it is asked to start scanning from a position that it
    /// has already scanned past.
    ///
    /// Using a `u8` here means that if we ever see a pattern that's longer
    /// than 255 bytes, then the entire rare byte prefilter is disabled.
    max: u8,
}

impl Default for RareByteOffset {
    fn default() -> RareByteOffset {
        RareByteOffset { max: 0 }
    }
}

impl RareByteOffset {
    /// Create a new rare byte offset. If the given offset is too big, then
    /// None is returned. In that case, callers should render the rare bytes
    /// prefilter inert.
    fn new(max: usize) -> Option<RareByteOffset> {
        if max > u8::MAX as usize {
            None
        } else {
            Some(RareByteOffset { max: max as u8 })
        }
    }
}

impl RareBytesBuilder {
    /// Create a new builder for constructing a rare byte prefilter.
    fn new() -> RareBytesBuilder {
        RareBytesBuilder {
            ascii_case_insensitive: false,
            rare_set: ByteSet::empty(),
            byte_offsets: RareByteOffsets::empty(),
            available: true,
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> RareBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the rare bytes prefilter.
    ///
    /// If there are more than 3 distinct starting bytes, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<PrefilterObj> {
        if !self.available || self.count > 3 {
            return None;
        }
        let (mut bytes, mut len) = ([0; 3], 0);
        for b in 0..=255 {
            if self.rare_set.contains(b) {
                bytes[len] = b as u8;
                len += 1;
            }
        }
        match len {
            0 => None,
            1 => Some(PrefilterObj::new(RareBytesOne {
                byte1: bytes[0],
                offset: self.byte_offsets.set[bytes[0] as usize],
            })),
            2 => Some(PrefilterObj::new(RareBytesTwo {
                offsets: self.byte_offsets,
                byte1: bytes[0],
                byte2: bytes[1],
            })),
            3 => Some(PrefilterObj::new(RareBytesThree {
                offsets: self.byte_offsets,
                byte1: bytes[0],
                byte2: bytes[1],
                byte3: bytes[2],
            })),
            _ => unreachable!(),
        }
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        // If we've already given up, then do nothing.
        if !self.available {
            return;
        }
        // If we've already blown our budget, then don't waste time looking
        // for more rare bytes.
        if self.count > 3 {
            self.available = false;
            return;
        }
        // If the pattern is too long, then our offset table is bunk, so
        // give up.
        if bytes.len() >= 256 {
            self.available = false;
            return;
        }
        let mut rarest = match bytes.get(0) {
            None => return,
            Some(&b) => (b, freq_rank(b)),
        };
        // The idea here is to look for the rarest byte in each pattern, and
        // add that to our set. As a special exception, if we see a byte that
        // we've already added, then we immediately stop and choose that byte,
        // even if there's another rare byte in the pattern. This helps us
        // apply the rare byte optimization in more cases by attempting to pick
        // bytes that are in common between patterns. So for example, if we
        // were searching for `Sherlock` and `lockjaw`, then this would pick
        // `k` for both patterns, resulting in the use of `memchr` instead of
        // `memchr2` for `k` and `j`.
        let mut found = false;
        for (pos, &b) in bytes.iter().enumerate() {
            self.set_offset(pos, b);
            if found {
                continue;
            }
            if self.rare_set.contains(b) {
                found = true;
                continue;
            }
            let rank = freq_rank(b);
            if rank < rarest.1 {
                rarest = (b, rank);
            }
        }
        if !found {
            self.add_rare_byte(rarest.0);
        }
    }

    fn set_offset(&mut self, pos: usize, byte: u8) {
        // This unwrap is OK because pos is never bigger than our max.
        let offset = RareByteOffset::new(pos).unwrap();
        self.byte_offsets.set(byte, offset);
        if self.ascii_case_insensitive {
            self.byte_offsets.set(opposite_ascii_case(byte), offset);
        }
    }

    fn add_rare_byte(&mut self, byte: u8) {
        self.add_one_rare_byte(byte);
        if self.ascii_case_insensitive {
            self.add_one_rare_byte(opposite_ascii_case(byte));
        }
    }

    fn add_one_rare_byte(&mut self, byte: u8) {
        if self.rare_set.insert(byte) {
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single "rare" byte.
#[derive(Clone, Debug)]
struct RareBytesOne {
    byte1: u8,
    offset: RareByteOffset,
}

impl Prefilter for RareBytesOne {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr(self.byte1, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.last_scan_at = pos;
                cmp::max(at, pos.saturating_sub(self.offset.max as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }

    fn looks_for_non_start_of_match(&self) -> bool {
        // TODO: It should be possible to use a rare byte prefilter in a
        // streaming context. The main problem is that we usually assume that
        // if a prefilter has scanned some text and not found anything, then no
        // match *starts* in that text. This doesn't matter in non-streaming
        // contexts, but in a streaming context, if we're looking for a byte
        // that doesn't start at the beginning of a match and don't find it,
        // then it's still possible for a match to start at the end of the
        // current buffer content. In order to fix this, the streaming searcher
        // would need to become aware of prefilters that do this and use the
        // appropriate offset in various places. It is quite a delicate change
        // and probably shouldn't be attempted until streaming search has a
        // better testing strategy. In particular, we'd really like to be able
        // to vary the buffer size to force strange cases that occur at the
        // edge of the buffer. If we make the buffer size minimal, then these
        // cases occur more frequently and easier.
        //
        // This is also a bummer because this means that if the prefilter
        // builder chose a rare byte prefilter, then a streaming search won't
        // use any prefilter at all because the builder doesn't know how it's
        // going to be used. Assuming we don't make streaming search aware of
        // these special types of prefilters as described above, we could fix
        // this by building a "backup" prefilter that could be used when the
        // rare byte prefilter could not. But that's a bandaide. Sigh.
        true
    }
}

/// A prefilter for scanning for two "rare" bytes.
#[derive(Clone, Debug)]
struct RareBytesTwo {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
}

impl Prefilter for RareBytesTwo {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr2(self.byte1, self.byte2, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.update_at(pos);
                let offset = self.offsets.set[haystack[pos] as usize].max;
                cmp::max(at, pos.saturating_sub(offset as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }

    fn looks_for_non_start_of_match(&self) -> bool {
        // TODO: See Prefilter impl for RareBytesOne.
        true
    }
}

/// A prefilter for scanning for three "rare" bytes.
#[derive(Clone, Debug)]
struct RareBytesThree {
    offsets: RareByteOffsets,
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

impl Prefilter for RareBytesThree {
    fn next_candidate(
        &self,
        state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..])
            .map(|i| {
                let pos = at + i;
                state.update_at(pos);
                let offset = self.offsets.set[haystack[pos] as usize].max;
                cmp::max(at, pos.saturating_sub(offset as usize))
            })
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }

    fn looks_for_non_start_of_match(&self) -> bool {
        // TODO: See Prefilter impl for RareBytesOne.
        true
    }
}

/// A builder for constructing a starting byte prefilter.
///
/// A starting byte prefilter is a simplistic prefilter that looks for possible
/// matches by reporting all positions corresponding to a particular byte. This
/// generally only takes affect when there are at most 3 distinct possible
/// starting bytes. e.g., the patterns `foo`, `bar`, and `baz` have two
/// distinct starting bytes (`f` and `b`), and this prefilter returns all
/// occurrences of either `f` or `b`.
///
/// In some cases, a heuristic frequency analysis may determine that it would
/// be better not to use this prefilter even when there are 3 or fewer distinct
/// starting bytes.
#[derive(Clone, Debug)]
struct StartBytesBuilder {
    /// Whether this prefilter should account for ASCII case insensitivity or
    /// not.
    ascii_case_insensitive: bool,
    /// The set of starting bytes observed.
    byteset: Vec<bool>,
    /// The number of bytes set to true in `byteset`.
    count: usize,
    /// The sum of frequency ranks for the rare bytes detected. This is
    /// intended to give a heuristic notion of how rare the bytes are.
    rank_sum: u16,
}

impl StartBytesBuilder {
    /// Create a new builder for constructing a start byte prefilter.
    fn new() -> StartBytesBuilder {
        StartBytesBuilder {
            ascii_case_insensitive: false,
            byteset: vec![false; 256],
            count: 0,
            rank_sum: 0,
        }
    }

    /// Enable ASCII case insensitivity. When set, byte strings added to this
    /// builder will be interpreted without respect to ASCII case.
    fn ascii_case_insensitive(mut self, yes: bool) -> StartBytesBuilder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Build the starting bytes prefilter.
    ///
    /// If there are more than 3 distinct starting bytes, or if heuristics
    /// otherwise determine that this prefilter should not be used, then `None`
    /// is returned.
    fn build(&self) -> Option<PrefilterObj> {
        if self.count > 3 {
            return None;
        }
        let (mut bytes, mut len) = ([0; 3], 0);
        for b in 0..256 {
            if !self.byteset[b] {
                continue;
            }
            // We don't handle non-ASCII bytes for now. Getting non-ASCII
            // bytes right is trickier, since we generally don't want to put
            // a leading UTF-8 code unit into a prefilter that isn't ASCII,
            // since they can frequently. Instead, it would be better to use a
            // continuation byte, but this requires more sophisticated analysis
            // of the automaton and a richer prefilter API.
            if b > 0x7F {
                return None;
            }
            bytes[len] = b as u8;
            len += 1;
        }
        match len {
            0 => None,
            1 => Some(PrefilterObj::new(StartBytesOne { byte1: bytes[0] })),
            2 => Some(PrefilterObj::new(StartBytesTwo {
                byte1: bytes[0],
                byte2: bytes[1],
            })),
            3 => Some(PrefilterObj::new(StartBytesThree {
                byte1: bytes[0],
                byte2: bytes[1],
                byte3: bytes[2],
            })),
            _ => unreachable!(),
        }
    }

    /// Add a byte string to this builder.
    ///
    /// All patterns added to an Aho-Corasick automaton should be added to this
    /// builder before attempting to construct the prefilter.
    fn add(&mut self, bytes: &[u8]) {
        if self.count > 3 {
            return;
        }
        if let Some(&byte) = bytes.get(0) {
            self.add_one_byte(byte);
            if self.ascii_case_insensitive {
                self.add_one_byte(opposite_ascii_case(byte));
            }
        }
    }

    fn add_one_byte(&mut self, byte: u8) {
        if !self.byteset[byte as usize] {
            self.byteset[byte as usize] = true;
            self.count += 1;
            self.rank_sum += freq_rank(byte) as u16;
        }
    }
}

/// A prefilter for scanning for a single starting byte.
#[derive(Clone, Debug)]
struct StartBytesOne {
    byte1: u8,
}

impl Prefilter for StartBytesOne {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr(self.byte1, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for two starting bytes.
#[derive(Clone, Debug)]
struct StartBytesTwo {
    byte1: u8,
    byte2: u8,
}

impl Prefilter for StartBytesTwo {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr2(self.byte1, self.byte2, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// A prefilter for scanning for three starting bytes.
#[derive(Clone, Debug)]
struct StartBytesThree {
    byte1: u8,
    byte2: u8,
    byte3: u8,
}

impl Prefilter for StartBytesThree {
    fn next_candidate(
        &self,
        _state: &mut PrefilterState,
        haystack: &[u8],
        at: usize,
    ) -> Candidate {
        memchr3(self.byte1, self.byte2, self.byte3, &haystack[at..])
            .map(|i| at + i)
            .map_or(Candidate::None, Candidate::PossibleStartOfMatch)
    }

    fn clone_prefilter(&self) -> Box<dyn Prefilter> {
        Box::new(self.clone())
    }

    fn heap_bytes(&self) -> usize {
        0
    }
}

/// Return the next candidate reported by the given prefilter while
/// simultaneously updating the given prestate.
///
/// The caller is responsible for checking the prestate before deciding whether
/// to initiate a search.
#[inline]
pub fn next<P: Prefilter>(
    prestate: &mut PrefilterState,
    prefilter: P,
    haystack: &[u8],
    at: usize,
) -> Candidate {
    let cand = prefilter.next_candidate(prestate, haystack, at);
    match cand {
        Candidate::None => {
            prestate.update_skipped_bytes(haystack.len() - at);
        }
        Candidate::Match(ref m) => {
            prestate.update_skipped_bytes(m.start() - at);
        }
        Candidate::PossibleStartOfMatch(i) => {
            prestate.update_skipped_bytes(i - at);
        }
    }
    cand
}

/// If the given byte is an ASCII letter, then return it in the opposite case.
/// e.g., Given `b'A'`, this returns `b'a'`, and given `b'a'`, this returns
/// `b'A'`. If a non-ASCII letter is given, then the given byte is returned.
pub fn opposite_ascii_case(b: u8) -> u8 {
    if b'A' <= b && b <= b'Z' {
        b.to_ascii_lowercase()
    } else if b'a' <= b && b <= b'z' {
        b.to_ascii_uppercase()
    } else {
        b
    }
}

/// Return the frequency rank of the given byte. The higher the rank, the more
/// common the byte (heuristically speaking).
fn freq_rank(b: u8) -> u8 {
    use crate::byte_frequencies::BYTE_FREQUENCIES;
    BYTE_FREQUENCIES[b as usize]
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn scratch() {
        let mut b = Builder::new(MatchKind::LeftmostFirst);
        b.add(b"Sherlock");
        b.add(b"locjaw");
        // b.add(b"Sherlock");
        // b.add(b"Holmes");
        // b.add(b"Watson");
        // b.add("Шерлок Холмс".as_bytes());
        // b.add("Джон Уотсон".as_bytes());

        let s = b.build().unwrap();
        println!("{:?}", s);
    }
}