1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*! A dynamically-allocated, fixed-size, buffer containing a [`BitSlice`]
region.
You can read the standard library’s [`alloc::boxed` module documentation][std]
here.
This module defines the [`BitBox`] buffer, and all of its associated support
code.
[`BitBox`] is equivalent to `Box<[bool]>`, in its operation and in its
relationship to the [`BitSlice`] and [`BitVec`] types. Most of the interesting
work to be done on a bit-sequence is implemented in `BitSlice`, to which
`BitBox` dereferences, and the box container itself only exists to maintain
wonership and provide some specializations that cannot safely be done on
`BitSlice` alone.
There is almost never a reason to use this type, as it is a mixture of
[`BitArray`]’s fixed width and [`BitVec`]’s heap allocation. You should only use
it when you have a bit-sequence whose width is either unknowable at compile-time
or inexpressable in `BitArray`, and are constructing the sequence in a `BitVec`
before freezing it.
[`BitArray`]: crate::array::BitArray
[`BitBox`]: crate::boxed::BitBox
[`BitSlice`]: crate::slice::BitSlice
[`BitVec`]: crate::vec::BitVec
[std]: alloc::boxed
!*/
#![cfg(feature = "alloc")]
use crate::{
index::BitIdx,
mem::BitMemory,
mutability::Mut,
order::{
BitOrder,
Lsb0,
},
ptr::{
BitPtr,
BitSpan,
},
slice::BitSlice,
store::BitStore,
vec::BitVec,
};
use alloc::boxed::Box;
use core::{
mem::ManuallyDrop,
slice,
};
use tap::pipe::Pipe;
/** A frozen heap-allocated buffer of individual bits.
This is essentially a [`BitVec`] that has frozen its allocation, and given up
the ability to change size. It is analagous to `Box<[bool]>`. You should prefer
[`BitArray`] over `BitBox` where possible, and may freely box it if you need the
indirection.
# Documentation
All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.
These sections look like this:
# Original
[`Box<[T]>`](alloc::boxed::Box)
# API Differences
The buffer type `Box<[bool]>` has no type parameters. `BitBox<O, T>` has the
same two type parameters as `BitSlice<O, T>`. Otherwise, `BitBox` is able to
implement the full API surface of `Box<[bool]>`.
# Behavior
Because `BitBox` is a fully-owned buffer, it is able to operate on its memory
without concern for any other views that may alias. This enables it to
specialize some [`BitSlice`] behavior to be faster or more efficient.
# Type Parameters
This takes the same [`BitOrder`] and [`BitStore`] parameters as [`BitSlice`].
Unlike `BitSlice`, it is restricted to only accept the fundamental integers as
its `BitStore` arguments; `BitBox` buffers can never be aliased by other
`BitBox`es, and do not need to share memory access.
# Safety
`BitBox` is a wrapper over a `NonNull<BitSlice<O, T>>` pointer; this allows it
to remain exactly two words in size, and means that it is subject to the same
representational incompatibility restrictions as [`BitSlice`] references. You
must never attempt to type-cast between `Box<[bool]>` and `BitBox` in any way,
nor may you attempt to modify the memory value of a `BitBox` handle. Doing so
will cause allocator and memory errors in your program, likely inducing a panic.
Everything in the `BitBox` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety or potential for incorrectness than their equivalent
items in the standard library. All `unsafe` APIs will have documentation
explicitly detailing what the API requires you to uphold in order for it to
function safely and correctly. All safe APIs will do so themselves.
# Macro Construction
Heap allocation can only occur at runtime, but the [`bitbox!`] macro will
construct an appropriate [`BitSlice`] buffer at compile-time, and at run-time,
only copy the buffer into a heap allocation.
[`BitArray`]: crate::array::BitArray
[`BitOrder`]: crate::order::BitOrder
[`BitSlice`]: crate::slice::BitSlice
[`BitStore`]: crate::store::BitStore
[`BitVec`]: crate::vec::BitVec
[`bitbox!`]: macro@crate::bitbox
**/
#[repr(transparent)]
pub struct BitBox<O = Lsb0, T = usize>
where
O: BitOrder,
T: BitStore,
{
bitspan: BitSpan<Mut, O, T>,
}
/// General-purpose functions not present on `Box<[T]>`.
impl<O, T> BitBox<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Copies a [`BitSlice`] region into a new `BitBox` allocation.
///
/// # Effects
///
/// This delegates to [`BitVec::from_bitslice`], then discards the excess
/// capacity.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 1, 1, 0, 1, 1];
/// let bb = BitBox::from_bitslice(&bits[2 ..]);
/// assert_eq!(bb, bits[2 ..]);
/// assert_eq!(bb.as_slice(), bits.as_slice());
/// ```
///
/// [`BitVec::from_bitslice`]: crate::vec::BitVec::from_bitslice
pub fn from_bitslice(slice: &BitSlice<O, T>) -> Self {
BitVec::from_bitslice(slice).into_boxed_bitslice()
}
/// Converts a `Box<[T]>` into a `BitBox`<O, T>` without copying its buffer.
///
/// # Parameters
///
/// - `boxed`: A boxed slice to view as bits.
///
/// # Returns
///
/// A `BitBox` over the `boxed` buffer.
///
/// # Panics
///
/// This panics if `boxed` is too long to convert into a `BitBox`. See
/// [`BitSlice::MAX_ELTS`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let boxed: Box<[u8]> = Box::new([0; 4]);
/// let addr = boxed.as_ptr();
/// let bb = BitBox::<LocalBits, _>::from_boxed_slice(boxed);
/// assert_eq!(bb, bits![0; 32]);
/// assert_eq!(addr, bb.as_slice().as_ptr());
/// ```
///
/// [`BitSlice::MAX_ELTS`]: crate::slice::BitSlice::MAX_ELTS
pub fn from_boxed_slice(boxed: Box<[T]>) -> Self {
Self::try_from_boxed_slice(boxed)
.expect("Slice was too long to be converted into a `BitBox`")
}
/// Converts a `Box<[T]>` into a `BitBox<O, T>` without copying its buffer.
///
/// This method takes ownership of a memory buffer and enables it to be used
/// as a bit-box. Because `Box<[T]>` can be longer than `BitBox`es, this is
/// a fallible method, and the original box will be returned if it cannot be
/// converted.
///
/// # Parameters
///
/// - `boxed`: Some boxed slice of memory, to be viewed as bits.
///
/// # Returns
///
/// If `boxed` is short enough to be viewed as a `BitBox`, then this returns
/// a `BitBox` over the `boxed` buffer. If `boxed` is too long, then this
/// returns `boxed` unmodified.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let boxed: Box<[u8]> = Box::new([0; 4]);
/// let addr = boxed.as_ptr();
/// let bb = BitBox::<LocalBits, _>::try_from_boxed_slice(boxed).unwrap();
/// assert_eq!(bb[..], bits![0; 32]);
/// assert_eq!(addr, bb.as_slice().as_ptr());
/// ```
pub fn try_from_boxed_slice(boxed: Box<[T]>) -> Result<Self, Box<[T]>> {
let mut boxed = ManuallyDrop::new(boxed);
BitPtr::from_mut_slice(&mut boxed[..])
.span(boxed.len() * T::Mem::BITS as usize)
.map(|bitspan| Self { bitspan })
.map_err(|_| ManuallyDrop::into_inner(boxed))
}
/// Converts the slice back into an ordinary slice of memory elements.
///
/// This does not affect the slice’s buffer, only the handle used to control
/// it.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// An ordinary boxed slice containing all of the bit-slice’s memory buffer.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bb = bitbox![0; 5];
/// let addr = bb.as_slice().as_ptr();
/// let boxed = bb.into_boxed_slice();
/// assert_eq!(boxed[..], [0][..]);
/// assert_eq!(addr, boxed.as_ptr());
/// ```
pub fn into_boxed_slice(self) -> Box<[T]> {
self.pipe(ManuallyDrop::new)
.as_mut_slice()
.pipe(|slice| unsafe { Box::from_raw(slice) })
}
/// Converts `self` into a vector without clones or allocation.
///
/// The resulting vector can be converted back into a box via [`BitVec<O,
/// T>`]’s [`.into_boxed_bitslice()`] method.
///
/// # Original
///
/// [`slice::into_vec`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.into_vec)
///
/// # API Differences
///
/// Despite taking a `Box<[T]>` receiver, this function is written in an
/// `impl<T> [T]` block.
///
/// Rust does not allow the text
///
/// ```rust,ignore
/// impl<O, T> BitSlice<O, T> {
/// fn into_bitvec(self: BitBox<O, T>);
/// }
/// ```
///
/// to be written, and `BitBox` exists specifically because
/// `Box<BitSlice<>>` cannot be written either, so this function must be
/// implemented directly on `BitBox` rather than on `BitSlice` with a boxed
/// receiver.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bb = bitbox![0, 1, 0, 1];
/// let bv = bb.into_bitvec();
///
/// assert_eq!(bv, bitvec![0, 1, 0, 1]);
/// ```
///
/// [`BitVec<O, T>`]: crate::vec::BitVec
/// [`.into_boxed_bitslice()`]: crate::vec::BitVec::into_boxed_bitslice
pub fn into_bitvec(self) -> BitVec<O, T> {
let mut bitspan = self.bitspan;
let mut raw = self
// Disarm the `self` destructor
.pipe(ManuallyDrop::new)
// Extract the `Box<[T]>` handle, invalidating `self`
.with_box(|b| unsafe { ManuallyDrop::take(b) })
// The distribution guarantees this to be correct and in-place.
.into_vec()
// Disarm the `Vec<T>` destructor *also*.
.pipe(ManuallyDrop::new);
/* The distribution claims that `[T]::into_vec(Box<[T]>) -> Vec<T>` does
not alter the address of the heap allocation, and only modifies the
buffer handle. Nevertheless, update the bit-pointer with the address of
the vector as returned by this transformation Just In Case.
Inspection of the distribution’s implementation shows that the
conversion from `(buf, len)` to `(buf, cap, len)` is done by using the
slice length as the buffer capacity. However, this is *not* a behavior
guaranteed by the distribution, and so the pipeline above must remain in
place in the event that this behavior ever changes. It should compile
away to nothing, as it is almost entirely typesystem manipulation.
*/
unsafe {
bitspan.set_address(raw.as_mut_ptr());
BitVec::from_fields(bitspan, raw.capacity())
}
}
/// Views the buffer’s contents as a `BitSlice`.
///
/// This is equivalent to `&bb[..]`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bb = bitbox![0, 1, 1, 0];
/// let bits = bb.as_bitslice();
/// ```
pub fn as_bitslice(&self) -> &BitSlice<O, T> {
self.bitspan.to_bitslice_ref()
}
/// Extracts a mutable bit-slice of the entire vector.
///
/// Equivalent to `&mut bv[..]`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![0, 1, 0, 1];
/// let bits = bv.as_mut_bitslice();
/// bits.set(0, true);
/// ```
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, T> {
self.bitspan.to_bitslice_mut()
}
/// Extracts an element slice containing the entire box.
///
/// # Analogue
///
/// See [`.as_bitslice()`] for a `&BitBox -> &BitSlice` transform.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "std")] {
/// use bitvec::prelude::*;
/// use std::io::{self, Write};
/// let buffer = bitbox![Msb0, u8; 0, 1, 0, 1, 1, 0, 0, 0];
/// io::sink().write(buffer.as_slice()).unwrap();
/// # }
/// ```
///
/// [`.as_bitslice()`]: Self::as_bitslice
pub fn as_slice(&self) -> &[T] {
let (data, len) =
(self.bitspan.address().to_const(), self.bitspan.elements());
unsafe { slice::from_raw_parts(data, len) }
}
/// Extracts a mutable slice of the entire box.
///
/// # Analogue
///
/// See [`.as_mut_bitslice()`] for a `&mut BitBox -> &mut BitSlice`
/// transform.
///
/// # Examples
///
/// ```rust
/// # #[cfg(feature = "std")] {
/// use bitvec::prelude::*;
/// use std::io::{self, Read};
/// let mut buffer = bitbox![Msb0, u8; 0; 24];
/// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
/// # }
/// ```
///
/// [`.as_mut_bitslice()`]: Self::as_mut_bitslice
pub fn as_mut_slice(&mut self) -> &mut [T] {
let (data, len) =
(self.bitspan.address().to_mut(), self.bitspan.elements());
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Sets the uninitialized bits of the vector to a fixed value.
///
/// This method modifies all bits in the allocated buffer that are outside
/// the `self.as_bitslice()` view so that they have a consistent value. This
/// can be used to zero the uninitialized memory so that when viewed as a
/// raw memory slice, bits outside the live region have a predictable value.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bb = BitBox::new(&220u8.view_bits::<Lsb0>()[.. 4]);
/// assert_eq!(bb.count_ones(), 2);
/// assert_eq!(bb.as_slice(), &[220u8]);
///
/// bb.set_uninitialized(false);
/// assert_eq!(bb.as_slice(), &[12u8]);
///
/// bb.set_uninitialized(true);
/// assert_eq!(bb.as_slice(), &[!3u8]);
/// ```
pub fn set_uninitialized(&mut self, value: bool) {
let mut bp = self.bitspan;
let (_, head, bits) = bp.raw_parts();
let head = head.value() as usize;
let tail = head + bits;
let full = crate::mem::elts::<T::Mem>(tail) * T::Mem::BITS as usize;
unsafe {
bp.set_head(BitIdx::ZERO);
bp.set_len(full);
let bits = bp.to_bitslice_mut();
bits.get_unchecked_mut(.. head).set_all(value);
bits.get_unchecked_mut(tail ..).set_all(value);
}
}
/// Permits a function to modify the `Box<[T]>` backing storage of a
/// `BitBox<_, T>`.
///
/// This produces a temporary `Box<[T]>` structure governing the `BitBox`’s
/// buffer and allows a function to view it mutably. After the
/// callback returns, the `Box` is written back into `self` and forgotten.
///
/// # Type Parameters
///
/// - `F`: A function which operates on a mutable borrow of a `Box<[T]>`
/// buffer controller.
/// - `R`: The return type of the `F` function.
///
/// # Parameters
///
/// - `&mut self`
/// - `func`: A function which receives a mutable borrow of a `Box<[T]>`
/// controlling `self`’s buffer.
///
/// # Returns
///
/// The return value of `func`. `func` is forbidden from borrowing any part
/// of the `Box<[T]>` temporary view.
fn with_box<F, R>(&mut self, func: F) -> R
where F: FnOnce(&mut ManuallyDrop<Box<[T]>>) -> R {
self.as_mut_slice()
.pipe(|raw| unsafe { Box::from_raw(raw) })
.pipe(ManuallyDrop::new)
.pipe_ref_mut(func)
}
}
mod api;
mod ops;
mod traits;
#[cfg(test)]
mod tests;