1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/*! Representations of the [`BitSlice`] region memory model.
This module allows any [`BitSlice`] region to be decomposed into domains that
restricts [`T::Alias`] markers to only the edge elements that may require them.
Specifically, any given [`BitSlice`] region is one of:
- touches only interior indices of one element
- touches at least one edge index of any number of elements (including zero)
In the latter case, any elements *completely* spanned by the [`BitSlice`] handle
are known to not have any other write-capable handles to them, and in the case
of an `&mut BitSlice` handle specifically, no other views at all. As such, the
domain view of this memory is able to remove the aliasing marker type and permit
direct memory access to the underlying buffer for the duration of its existence.
[`BitSlice`]: crate::slice::BitSlice
[`T::Alias`]: crate::store::BitStore::Alias
!*/
use crate::{
index::{
BitIdx,
BitTail,
},
mem::BitMemory,
order::BitOrder,
slice::BitSlice,
store::BitStore,
};
use core::{
fmt::{
self,
Binary,
Debug,
Formatter,
LowerHex,
Octal,
UpperHex,
},
slice,
};
use tap::{
pipe::Pipe,
tap::Tap,
};
use wyz::fmt::FmtForward;
macro_rules! bit_domain {
($t:ident $(=> $m:ident)? $(@ $a:ident)?) => {
/// Granular representation of the memory region containing a
/// [`BitSlice`].
///
/// [`BitSlice`] regions can be described in terms of edge and center
/// partitions, where the edge partitions must retain the aliasing
/// status of the source `BitSlice` handle, and the center partition is
/// known to be completely unaliased by any other view. This property
/// allows any `BitSlice` handle to be decomposed into smaller regions,
/// and safely remove any aliasing markers from the center partition
/// that no longer requires such safeguarding.
///
/// This enum acts like the `.split*` methods in that it only subdivides
/// the source [`BitSlice`] into smaller `BitSlice`s, and makes
/// appropriate modifications to the aliasing markers.
///
/// It does not add any aliasing markers: if the slice is marked as
/// aliased, then the edge partitions will retain that marker, and if it
/// is not, then the edge partitions do not need it.
///
/// This does not provide references to the underlying memory buffer. If
/// you need such direct access, use the [`Domain`] or [`DomainMut`]
/// enums.
///
/// # Lifetimes
///
/// - `'a`: The lifetime of the referent storage region.
///
/// # Type Parameters
///
/// - `O`: The ordering type of the source [`BitSlice`] handle.
/// - `T`: The register type of the source [`BitSlice`] handle,
/// including any aliasing markers.
///
/// # Aliasing Awareness
///
/// This enum does not grant access to memory outside the scope of the
/// original [`BitSlice`] handle, and so does not need to modfiy any
/// aliasing conditions.
///
/// [`BitSlice`]: crate::slice::BitSlice
/// [`Domain`]: crate::domain::Domain
/// [`DomainMut`]: crate::domain::DomainMut
#[derive(Debug)]
pub enum $t <'a, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Indicates that a [`BitSlice`] is contained entirely in the
/// interior indices of a single memory register.
///
/// [`BitSlice`]: crate::slice::BitSlice
Enclave {
/// The start index of the [`BitSlice`].
///
/// This is not likely to be useful information, but is retained
/// for structural similarity with the rest of the module.
///
/// [`BitSlice`]: crate::slice::BitSlice
head: BitIdx<T::Mem>,
/// The original [`BitSlice`] used to create this bit-domain
/// view.
///
/// [`BitSlice`]: crate::slice::BitSlice
body: &'a $($m)? BitSlice<O, T>,
/// The end index of the [`BitSlice`].
///
/// This is not likely to be useful information, but is retained
/// for structural similarity with the rest of the module.
///
/// [`BitSlice`]: crate::slice::BitSlice
tail: BitTail<T::Mem>,
},
/// Indicates that a [`BitSlice`] region touches at least one edge
/// index of any number of elements.
///
/// This contains two [`BitSlice`]s representing the
/// partially-occupied edge elements, with their original aliasing
/// marker, and one `BitSlice` representing the fully-occupied
/// interior elements, marked as unaliased.
///
/// [`BitSlice`]: crate::slice::BitSlice
Region {
/// Any bits that partially-fill the base element of the slice
/// region.
///
/// This does not modify its aliasing status, as it will already
/// be appropriately marked before constructing this view.
head: &'a $($m)? BitSlice<O, T>,
/// Any bits inside elements that the source [`BitSlice`]
/// completely covers.
///
/// This is marked as unaliased, because it is statically
/// impossible for any other handle to have write access to the
/// region it covers. As such, a [`BitSlice`] that was marked as
/// entirely aliased, but contains interior unaliased elements,
/// can safely remove its aliasing protections.
///
/// [`BitSlice`]: crate::slice::BitSlice
body: &'a $($m)? BitSlice<O, T::Unalias>,
/// Any bits that partially fill the last element of the slice
/// region.
///
/// This does not modify its aliasing status, as it will already
/// be appropriately marked before constructing this view.
tail: &'a $($m)? BitSlice<O, T>,
},
}
impl<'a, O, T> $t <'a, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Attempts to view the domain as an enclave variant.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// If `self` is the [`Enclave`] variant, this returns `Some` of the
/// enclave fields, as a tuple. Otherwise, it returns `None`.
///
/// [`Enclave`]: Self::Enclave
pub fn enclave(self) -> Option<(
BitIdx<T::Mem>,
&'a $($m)? BitSlice<O, T>,
BitTail<T::Mem>,
)> {
if let Self::Enclave { head, body, tail } = self {
Some((head, body, tail))
}
else {
None
}
}
/// Attempts to view the domain as a region variant.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// If `self` is the [`Region`] variant, this returns `Some` of the
/// region fields, as a tuple. Otherwise, it returns `None`.
///
/// [`Region`]: Self::Region
pub fn region(self) -> Option<(
&'a $($m)? BitSlice<O, T>,
&'a $($m)? BitSlice<O, T::Unalias>,
&'a $($m)? BitSlice<O, T>,
)> {
if let Self::Region { head, body, tail } = self {
Some((head, body, tail))
}
else {
None
}
}
/// Constructs a bit-domain view from a [`BitSlice`].
///
/// # Parameters
///
/// - `slice`: The source [`BitSlice`] for which the view is
/// constructed.
///
/// # Returns
///
/// A bit-domain view over the source slice.
///
/// [`BitSlice`]: crate::slice::BitSlice
pub(crate) fn new(slice: &'a $($m)? BitSlice<O, T>) -> Self {
let bitspan = slice.as_bitspan();
let h = bitspan.head();
let (e, t) = h.span(bitspan.len());
let w = T::Mem::BITS;
match (h.value(), e, t.value()) {
(_, 0, _) => Self::empty(),
(0, _, t) if t == w => Self::spanning(slice),
(_, _, t) if t == w => Self::partial_head(slice, h),
(0, ..) => Self::partial_tail(slice, h, t),
(_, 1, _) => Self::minor(slice, h, t),
_ => Self::major(slice, h, t),
}
}
fn empty() -> Self {
Self::Region {
head: Default::default(),
body: Default::default(),
tail: Default::default(),
}
}
fn major(
slice: &'a $($m)? BitSlice<O, T>,
head: BitIdx<T::Mem>,
tail: BitTail<T::Mem>,
) -> Self {
let (head, rest) = bit_domain!(split $($m)?
slice,
(T::Mem::BITS - head.value()) as usize,
);
let (body, tail) = bit_domain!(split $($m)?
rest,
rest.len() - (tail.value() as usize),
);
Self::Region {
head: bit_domain!(retype $($m)? head),
body: bit_domain!(retype $($m)? body),
tail: bit_domain!(retype $($m)? tail),
}
}
fn minor(
slice: &'a $($m)? BitSlice<O, T>,
head: BitIdx<T::Mem>,
tail: BitTail<T::Mem>,
) -> Self {
Self::Enclave {
head,
body: slice,
tail,
}
}
fn partial_head(
slice: &'a $($m)? BitSlice<O, T>,
head: BitIdx<T::Mem>,
) -> Self {
let (head, rest) = bit_domain!(split $($m)?
slice,
(T::Mem::BITS - head.value()) as usize,
);
let (head, body) = (
bit_domain!(retype $($m)? head),
bit_domain!(retype $($m)? rest),
);
Self::Region {
head,
body,
tail: Default::default(),
}
}
fn partial_tail(
slice: &'a $($m)? BitSlice<O, T>,
/* This discarded head argument makes all constructor functions
have the same register layout for the call, allowing the `::new`
function to establish the arguments ahead of time, then select a
constructor function to jump into.
*/
_head: BitIdx<T::Mem>,
tail: BitTail<T::Mem>,
) -> Self {
let (rest, tail) = bit_domain!(split $($m)?
slice,
slice.len() - (tail.value() as usize),
);
let (body, tail) = (
bit_domain!(retype $($m)? rest),
bit_domain!(retype $($m)? tail),
);
Self::Region {
head: Default::default(),
body,
tail,
}
}
fn spanning(slice: &'a $($m)? BitSlice<O, T>) -> Self {
Self::Region {
head: Default::default(),
body: bit_domain!(retype $($m)? slice),
tail: Default::default(),
}
}
}
};
(retype mut $slice:ident $(,)? ) => {
unsafe { &mut *($slice as *mut BitSlice<O, _> as *mut BitSlice<O, _>) }
};
(retype $slice:ident $(,)? ) => {
unsafe { &*($slice as *const BitSlice<O, _> as *const BitSlice<O, _>) }
};
(split mut $slice:ident, $at:expr $(,)? ) => {
unsafe { $slice.split_at_unchecked_mut($at) }
};
(split $slice:ident, $at:expr $(,)? ) => {
unsafe { $slice.split_at_unchecked($at) }
};
}
bit_domain!(BitDomain);
bit_domain!(BitDomainMut => mut @ Alias);
#[cfg(not(tarpaulin_include))]
impl<O, T> Clone for BitDomain<'_, O, T>
where
O: BitOrder,
T: BitStore,
{
fn clone(&self) -> Self {
*self
}
}
impl<O, T> Copy for BitDomain<'_, O, T>
where
O: BitOrder,
T: BitStore,
{
}
macro_rules! domain {
($t:ident $(=> $m:ident @ $a:ident)?) => {
/// Granular representation of the memory region containing a
/// [`BitSlice`].
///
/// [`BitSlice`] regions can be described in terms of edge and center
/// partitions, where the edge partitions must retain the aliasing
/// status of the source `BitSlice` handle, and the center partition is
/// known to be completely unaliased by any other view. This property
/// allows any `BitSlice` handle to be decomposed into smaller regions,
/// and safely remove any aliasing markers from the center partition
/// that no longer requires such safeguarding.
///
/// This enum splits the underlying element slice `[T]` into the
/// maybe-aliased edge elements and known-unaliased center elements. If
/// you do not need to work with the memory elements directly, and only
/// need to firmly specify the access behavior of the [`BitSlice`]
/// handle, use the [`BitDomain`] and [`BitDomainMut`] enums.
///
/// # Lifetimes
///
/// - `'a`: The lifetime of the referent storage region.
///
/// # Type Parameters
///
/// - `T`: The register type of the source [`BitSlice`] handle,
/// including any aliasing markers.
///
/// # Mutability
///
/// The immutable view produces [`T::Alias`] references, which permit
/// foreign writes to the referent location but disallow writes through
/// itself. The mutable view produces [`T::Access`] references, because
/// `&mut _` references can only ever be produced when no other aliasing
/// handle exists. The write permissions must be weakened from
/// `&mut T::Alias` to `&T::Access` in order to satisfy the Rust memory
/// rules.
///
/// The edge references do not forbid modifying bits outside of the
/// source [`BitSlice`] domain, and writes out of bounds will be
/// correctly handled by any other handles capable of viewing those
/// elements. Doing so is still *incorrect*, though defined, and you are
/// responsible for writing only within bounds when using `DomainMut`.
///
/// [`BitDomain`]: crate::domain::BitDomain
/// [`BitDomainMut`]: crate::domain::BitDomainMut
/// [`BitSlice`]: crate::slice::BitSlice
/// [`T::Access`]: crate::store::BitStore::Access
/// [`T::Alias`]: crate::store::BitStore::Alias
#[derive(Debug)]
pub enum $t <'a, T>
where
T: BitStore,
{
/// Indicates that a [`BitSlice`] is contained entirely in the
/// interior indices of a single memory element.
///
/// [`BitSlice`]: crate::slice::BitSlice
Enclave {
/// The start index of the [`BitSlice`].
///
/// [`BitSlice`]: crate::slice::BitSlice
head: BitIdx<T::Mem>,
/// An aliased view of the element containing the [`BitSlice`].
///
/// This is necessary even on immutable views, because other
/// views to the referent element may be permitted to modify it.
///
/// [`BitSlice`]: crate::slice::BitSlice
elem: &'a T $(::$a)?,
/// The end index of the [`BitSlice`].
///
/// [`BitSlice`]: crate::slice::BitSlice
tail: BitTail<T::Mem>,
},
/// Indicates that a [`BitSlice`] region touches at least one edge
/// index of any number of elements.
///
/// This contains two optional references to the aliased edges, and
/// one reference to the unaliased middle. Each can be queried and
/// used individually.
///
/// [`BitSlice`]: crate::slice::BitSlice
Region {
/// If the [`BitSlice`] started in the interior of its first
/// element, this contains the starting index and the base
/// address.
///
/// [`BitSlice`]: crate::slice::BitSlice
head: Option<(BitIdx<T::Mem>, &'a T $(::$a)?)>,
/// All fully-spanned, unaliased, elements.
///
/// This is marked as bare memory without any access
/// protections, because it is statically impossible for any
/// other handle to have write access to the region it covers.
/// As such, a [`BitSlice`] that was marked as entirely aliased,
/// but contains interior unaliased elements, can safely remove
/// its aliasing protections.
body: &'a $($m)? [T::Unalias],
/// If the `BitSlice` ended in the interior of its last element,
/// this contains the ending index and the last address.
tail: Option<(&'a T $(::$a)?, BitTail<T::Mem>)>,
}
}
impl<'a, T> $t <'a, T>
where
T: BitStore,
{
/// Attempts to view the domain as an enclave variant.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// If `self` is the [`Enclave`] variant, this returns `Some` of the
/// enclave fields, as a tuple. Otherwise, it returns `None`.
///
/// [`Enclave`]: Self::Enclave
pub fn enclave(self) -> Option<(
BitIdx<T::Mem>,
&'a T $(::$a)?,
BitTail<T::Mem>,
)> {
if let Self::Enclave { head, elem, tail } = self {
Some((head, elem, tail))
} else {
None
}
}
/// Attempts to view the domain as the region variant.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// If `self` is the [`Region`] variant, this returns `Some` of the
/// region fields, as a tuple. Otherwise, it returns `None`.
///
/// [`Region`]: Self::Region
pub fn region(self) -> Option<(
Option<(BitIdx<T::Mem>, &'a T $(::$a)?)>,
&'a $($m)? [T::Unalias],
Option<(&'a T $(::$a)?, BitTail<T::Mem>)>,
)> {
if let Self::Region { head, body, tail } = self {
Some((head,body,tail))
}
else {
None
}
}
pub(crate) fn new<O>(slice: &'a $($m)? BitSlice<O, T>) -> Self
where O: BitOrder {
let bitspan = slice.as_bitspan();
let head = bitspan.head();
let elts = bitspan.elements();
let tail = bitspan.tail();
let bits = T::Mem::BITS;
let base = bitspan.address().to_const() as *const _;
match (head.value(), elts, tail.value()) {
(_, 0, _) => Self::empty(),
(0, _, t) if t == bits => Self::spanning(base, elts),
(_, _, t) if t == bits => Self::partial_head(base, elts, head),
(0, ..) => Self::partial_tail(base, elts, tail),
(_, 1, _) => Self::minor(base, head, tail),
_ => Self::major(base, elts, head, tail),
}
}
fn empty() -> Self {
Self::Region {
head: None,
body: & $($m)? [],
tail: None,
}
}
fn major(
base: *const T $(::$a)?,
elts: usize,
head: BitIdx<T::Mem>,
tail: BitTail<T::Mem>,
) -> Self {
let h = unsafe { &*base };
let t = unsafe { &*base.add(elts - 1) };
let body = domain!(slice $($m)? base.add(1), elts - 2);
Self::Region {
head: Some((head, h)),
body,
tail: Some((t, tail)),
}
}
fn minor(
addr: *const T $(::$a)?,
head: BitIdx<T::Mem>,
tail: BitTail<T::Mem>,
) -> Self {
Self::Enclave {
head,
elem: unsafe { &*addr },
tail,
}
}
fn partial_head(
base: *const T $(::$a)?,
elts: usize,
head: BitIdx<T::Mem>,
) -> Self {
let h = unsafe { &*base };
let body = domain!(slice $($m)? base.add(1), elts - 1);
Self::Region {
head: Some((head, h)),
body,
tail: None,
}
}
fn partial_tail(
base: *const T $(::$a)?,
elts: usize,
tail: BitTail<T::Mem>,
) -> Self {
let t = unsafe { &*base.add(elts - 1) };
let body = domain!(slice $($m)? base, elts - 1);
Self::Region {
head: None,
body,
tail: Some((t, tail)),
}
}
fn spanning(base: *const T $(::$a)?, elts: usize) -> Self {
Self::Region {
head: None,
body: domain!(slice $($m)? base, elts),
tail: None,
}
}
}
};
(slice mut $base:expr, $elts:expr) => {
unsafe { slice::from_raw_parts_mut($base as *const _ as *mut _, $elts) }
};
(slice $base:expr, $elts:expr) => {
unsafe { slice::from_raw_parts($base as *const _, $elts) }
};
}
domain!(Domain);
domain!(DomainMut => mut @ Access);
#[cfg(not(tarpaulin_include))]
impl<T> Clone for Domain<'_, T>
where T: BitStore
{
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> Iterator for Domain<'a, T>
where T: BitStore
{
type Item = T::Mem;
fn next(&mut self) -> Option<Self::Item> {
match self {
Self::Enclave { elem, .. } => {
elem.load_value().pipe(Some).tap(|_| *self = Self::empty())
},
Self::Region { head, body, tail } => {
if let Some((_, elem)) = *head {
return elem.load_value().pipe(Some).tap(|_| *head = None);
}
if let Some((elem, rest)) = body.split_first() {
*body = rest;
return elem.load_value().into();
}
if let Some((elem, _)) = *tail {
return elem.load_value().pipe(Some).tap(|_| *tail = None);
}
None
},
}
}
}
impl<'a, T> DoubleEndedIterator for Domain<'a, T>
where T: BitStore
{
fn next_back(&mut self) -> Option<Self::Item> {
match self {
Self::Enclave { elem, .. } => {
elem.load_value().pipe(Some).tap(|_| *self = Self::empty())
},
Self::Region { head, body, tail } => {
if let Some((elem, _)) = *tail {
return elem.load_value().pipe(Some).tap(|_| *tail = None);
}
if let Some((elem, rest)) = body.split_last() {
*body = rest;
return elem.load_value().into();
}
if let Some((_, elem)) = *head {
return elem.load_value().pipe(Some).tap(|_| *head = None);
}
None
},
}
}
}
impl<T> ExactSizeIterator for Domain<'_, T>
where T: BitStore
{
fn len(&self) -> usize {
match self {
Self::Enclave { .. } => 1,
Self::Region { head, body, tail } => {
head.is_some() as usize + body.len() + tail.is_some() as usize
},
}
}
}
impl<T> core::iter::FusedIterator for Domain<'_, T> where T: BitStore
{
}
impl<T> Copy for Domain<'_, T> where T: BitStore
{
}
macro_rules! fmt {
($($f:ty => $fwd:ident),+ $(,)?) => { $(
impl<T> $f for Domain<'_, T>
where T: BitStore
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
fmt.debug_list()
.entries(self.into_iter().map(FmtForward::$fwd))
.finish()
}
}
)+ };
}
fmt!(
Binary => fmt_binary,
LowerHex => fmt_lower_hex,
Octal => fmt_octal,
UpperHex => fmt_upper_hex,
);
#[cfg(test)]
mod tests {
use crate::prelude::*;
#[test]
fn domain_iter() {
let data = [1u32, 2, 3];
let bits = &data.view_bits::<LocalBits>()[4 .. 92];
for (iter, elem) in bits.domain().rev().zip([3, 2, 1].iter().copied()) {
assert_eq!(iter, elem);
}
}
}