1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/*! Internal implementation macros for the public exports.

The macros in this module are required to be exported from the crate, as the
public macros will call them from client contexts (`macro_rules!` expansion
bodies are not in source crate scope, as they are token expansion rather than
symbolic calls). However, they are not part of the public *API* of the crate,
and are not intended for use anywhere but in the expansion bodies of the
public-API constructor macros.
!*/

#![doc(hidden)]

#[doc(hidden)]
pub use core;

#[doc(hidden)]
pub use funty;

/** Encodes a sequence of bits into an array of `BitStore` types.

This is able to encode a bitstream into any of the fundamental integers, their
atomics, and their cells. It always produces an array of the requested type,
even if the array is one element long.
**/
#[doc(hidden)]
#[macro_export]
macro_rules! __encode_bits {
	//  Capture the `BitStore` storage arguments literally. The macro cannot
	//  accept unknown typenames, as it must use them to chunk the bitstream.

	($ord:tt, u8; $($val:expr),*) => {
		$crate::__encode_bits!($ord, u8 as u8; $($val),*)
	};
	($ord:tt, Cell<u8>; $($val:expr),*) => {
		$crate::__encode_bits!($ord, Cell<u8> as u8; $($val),*)
	};
	($ord:tt, AtomicU8; $($val:expr),*) => {
		$crate::__encode_bits!($ord, AtomicU8 as u8; $($val),*)
	};

	($ord:tt, u16; $($val:expr),*) => {
		$crate::__encode_bits!($ord, u16 as u16; $($val),*)
	};
	($ord:tt, Cell<u16>; $($val:expr),*) => {
		$crate::__encode_bits!($ord, Cell<u16> as u16; $($val),*)
	};
	($ord:tt, AtomicU16; $($val:expr),*) => {
		$crate::__encode_bits!($ord, AtomicU16 as u16; $($val),*)
	};

	($ord:tt, u32; $($val:expr),*) => {
		$crate::__encode_bits!($ord, u32 as u32; $($val),*)
	};
	($ord:tt, Cell<u32>; $($val:expr),*) => {
		$crate::__encode_bits!($ord, Cell<u32> as u32; $($val),*)
	};
	($ord:tt, AtomicU32; $($val:expr),*) => {
		$crate::__encode_bits!($ord, AtomicU32 as u32; $($val),*)
	};

	($ord:tt, u64; $($val:expr),*) => {
		$crate::__encode_bits!($ord, u64 as u64; $($val),*)
	};
	($ord:tt, Cell<u64>; $($val:expr),*) => {
		$crate::__encode_bits!($ord, Cell<u64> as u64; $($val),*)
	};
	($ord:tt, AtomicU64; $($val:expr),*) => {
		$crate::__encode_bits!($ord, AtomicU64 as u64; $($val),*)
	};

	($ord:tt, usize; $($val:expr),*) => {
		$crate::__encode_bits!($ord, usize as usize; $($val),*)
	};
	($ord:tt, Cell<usize>; $($val:expr),*) => {
		$crate::__encode_bits!($ord, Cell<usize> as usize; $($val),*)
	};
	($ord:tt, AtomicUsize; $($val:expr),*) => {
		$crate::__encode_bits!($ord, AtomicUsize as usize; $($val),*)
	};

	//  Capture `$typ as usize`, and forward them to the correct known-width
	//  integer for construction.
	($ord:tt, $typ:ty as usize; $($val:expr),*) => {{
		const LEN: usize = $crate::__count_elts!(usize; $($val),*);

		#[cfg(target_pointer_width = "32")]
		let out: [$typ; LEN] = $crate::__encode_bits!(
			$ord, $typ as u32 as usize; $($val),*
		);

		#[cfg(target_pointer_width = "64")]
		let out: [$typ; LEN] = $crate::__encode_bits!(
			$ord, $typ as u64 as usize; $($val),*
		);

		out
	}};

	/* All matchers above forward to this matcher, which then forwards to those
	below.

	This block extends the bitstream with 64 `0` literals, ensuring that *any*
	provided bitstream can fit into the chunking matchers for subdivision.
	*/
	($ord:tt, $typ:ty as $uint:ident $(as $usz:ident)?; $($val:expr),*) => {
		$crate::__encode_bits!(
			$ord, $typ as $uint $(as $usz)?, []; $($val,)*
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 32
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 48
			0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 64
		)
	};

	/* These two blocks are the last invoked. They require a sequence of chunked
	element candidates (the `$elem` token is actually an opaque cluster of bit
	expressions), followed by literal `0` tokens. Tokens provided by the caller
	are already opaque; only the zeros created in the previous arm are visible.

	As such, these enter only when the caller-provided bit tokens are exhausted.

	Once entered, these matchers convert each tuple of bit expressions into the
	requested storage type, and collect them into an array. This array is the
	return value of the originally-called macro.
	*/
	($ord:tt, $typ:ty as $uint:ident as usize, [$( ( $($elem:tt),* ) )*]; $(0,)*) => {
		//  `usize` must be constructed as a fixed-width integer, converted into
		//  `usize`, and *then* converted into the final storage type.
		[$(<$typ as From<usize>>::from(
			$crate::__make_elem!($ord, $uint as $uint; $($elem),*) as usize
		)),*]
	};
	($ord:tt, $typ:ty as $uint:ident, [$( ( $($elem:tt),* ) )*]; $(0,)*) => {
		[$(
			$crate::__make_elem!($ord, $typ as $uint; $($elem),*)
		),*]
	};

	/* These matchers chunk a stream of bit expressions into storage elements.

	On each entry, one element’s worth of bit tokens are pulled from the front
	of the stream (possibly including the literal `0` tokens provided above) and
	appended to the accumulator array as a n-tuple of bit expressions. This
	process continues until no more caller-provided bitstream tokens remain, at
	which point recursion traps in the above matchers, terminating the chunking
	and proceeding to element construction.
	*/
	(
		$ord:tt, $typ:tt as u8, [$( $elem:tt )*];
		$a0:tt, $b0:tt, $c0:tt, $d0:tt, $e0:tt, $f0:tt, $g0:tt, $h0:tt,
		$($t:tt)*
	) => {
		$crate::__encode_bits!(
			$ord, $typ as u8, [$($elem)* (
				$a0, $b0, $c0, $d0, $e0, $f0, $g0, $h0
			)]; $($t)*
		)
	};

	(
		$ord:tt, $typ:tt as u16, [$( $elem:tt )*];
		$a0:tt, $b0:tt, $c0:tt, $d0:tt, $e0:tt, $f0:tt, $g0:tt, $h0:tt,
		$a1:tt, $b1:tt, $c1:tt, $d1:tt, $e1:tt, $f1:tt, $g1:tt, $h1:tt,
		$($t:tt)*
	) => {
		$crate::__encode_bits!(
			$ord, $typ as u16, [$($elem)* (
				$a0, $b0, $c0, $d0, $e0, $f0, $g0, $h0,
				$a1, $b1, $c1, $d1, $e1, $f1, $g1, $h1
			)]; $($t)*
		)
	};

	(
		$ord:tt, $typ:tt as u32 $(as $usz:ident)?, [$( $elem:tt )*];
		$a0:tt, $b0:tt, $c0:tt, $d0:tt, $e0:tt, $f0:tt, $g0:tt, $h0:tt,
		$a1:tt, $b1:tt, $c1:tt, $d1:tt, $e1:tt, $f1:tt, $g1:tt, $h1:tt,
		$a2:tt, $b2:tt, $c2:tt, $d2:tt, $e2:tt, $f2:tt, $g2:tt, $h2:tt,
		$a3:tt, $b3:tt, $c3:tt, $d3:tt, $e3:tt, $f3:tt, $g3:tt, $h3:tt,
		$($t:tt)*
	) => {
		$crate::__encode_bits!(
			$ord, $typ as u32 $(as $usz)?, [$($elem)* (
				$a0, $b0, $c0, $d0, $e0, $f0, $g0, $h0,
				$a1, $b1, $c1, $d1, $e1, $f1, $g1, $h1,
				$a2, $b2, $c2, $d2, $e2, $f2, $g2, $h2,
				$a3, $b3, $c3, $d3, $e3, $f3, $g3, $h3
			)]; $($t)*
		)
	};

	(
		$ord:tt, $typ:tt as u64 $(as $usz:ident)?, [$( $elem:tt )*];
		$a0:tt, $b0:tt, $c0:tt, $d0:tt, $e0:tt, $f0:tt, $g0:tt, $h0:tt,
		$a1:tt, $b1:tt, $c1:tt, $d1:tt, $e1:tt, $f1:tt, $g1:tt, $h1:tt,
		$a2:tt, $b2:tt, $c2:tt, $d2:tt, $e2:tt, $f2:tt, $g2:tt, $h2:tt,
		$a3:tt, $b3:tt, $c3:tt, $d3:tt, $e3:tt, $f3:tt, $g3:tt, $h3:tt,
		$a4:tt, $b4:tt, $c4:tt, $d4:tt, $e4:tt, $f4:tt, $g4:tt, $h4:tt,
		$a5:tt, $b5:tt, $c5:tt, $d5:tt, $e5:tt, $f5:tt, $g5:tt, $h5:tt,
		$a6:tt, $b6:tt, $c6:tt, $d6:tt, $e6:tt, $f6:tt, $g6:tt, $h6:tt,
		$a7:tt, $b7:tt, $c7:tt, $d7:tt, $e7:tt, $f7:tt, $g7:tt, $h7:tt,
		$($t:tt)*
	) => {
		$crate::__encode_bits!(
			$ord, $typ as u64 $(as $usz)?, [$($elem)* (
				$a0, $b0, $c0, $d0, $e0, $f0, $g0, $h0,
				$a1, $b1, $c1, $d1, $e1, $f1, $g1, $h1,
				$a2, $b2, $c2, $d2, $e2, $f2, $g2, $h2,
				$a3, $b3, $c3, $d3, $e3, $f3, $g3, $h3,
				$a4, $b4, $c4, $d4, $e4, $f4, $g4, $h4,
				$a5, $b5, $c5, $d5, $e5, $f5, $g5, $h5,
				$a6, $b6, $c6, $d6, $e6, $f6, $g6, $h6,
				$a7, $b7, $c7, $d7, $e7, $f7, $g7, $h7
			)]; $($t)*
		)
	};
}

/// Counts the number of repetitions inside a `$()*` sequence.
#[doc(hidden)]
#[macro_export]
macro_rules! __count {
	(@ $val:expr) => { 1 };
	($($val:expr),*) => {{
		/* Clippy warns that `.. EXPR + 1`, for any value of `EXPR`, should be
		replaced with `..= EXPR`. This means that `.. $crate::__count!` raises
		the lint, causing `bits![(val,)…]` to have an unfixable lint warning.
		By binding to a `const`, then returning the `const`, this syntax
		construction is avoided as macros only expand to
		`.. { const LEN = …; LEN }` rather than `.. 0 (+ 1)…`.
		*/
		const LEN: usize = 0usize $(+ $crate::__count!(@ $val))*;
		LEN
	}};
}

/// Counts the number of elements needed to store a number of bits.
#[doc(hidden)]
#[macro_export]
macro_rules! __count_elts {
	($t:ty; $($val:expr),*) => {{
		$crate::mem::elts::<$t>($crate::__count!($($val),*))
	}};
}

/** Constructs a `T: BitStore` element from a byte-chunked sequence of bits.

# Arguments

- one of `Lsb0`, `Msb0`, `LocalBits`, or some path to a `BitOrder` implementor:
  the ordering parameter to use. Token matching against the three named
  orderings allows immediate work; unknown tokens invoke their trait
  implementation.
- `$typ` as `$uint`: Any `BitStore` implementor and its `::Mem` type.
- A sequence of any number of `(`, eight expressions, then `)`. These cluster
  bits into bytes, bytes into `$uint`, and then `$uint` into `$typ`.

# Returns

Exactly one `$typ`, whose bit-pattern is set to the provided sequence according
to the provided ordering.
**/
#[doc(hidden)]
#[macro_export]
macro_rules! __make_elem {
	//  Token-matching ordering names can use specialized work.
	(Lsb0, $typ:ty as $uint:ident; $(
		$a:expr, $b:expr, $c:expr, $d:expr,
		$e:expr, $f:expr, $g:expr, $h:expr
	),*) => {
		<$typ as From<$uint>>::from($crate::__ty_from_bytes!(
			Lsb0, $uint, [$($crate::macros::internal::u8_from_le_bits(
				$a != 0, $b != 0, $c != 0, $d != 0,
				$e != 0, $f != 0, $g != 0, $h != 0,
			)),*]
		))
	};
	(Msb0, $typ:ty as $uint:ident; $(
		$a:expr, $b:expr, $c:expr, $d:expr,
		$e:expr, $f:expr, $g:expr, $h:expr
	),*) => {
		<$typ as From<$uint>>::from($crate::__ty_from_bytes!(
			Msb0, $uint, [$($crate::macros::internal::u8_from_be_bits(
				$a != 0, $b != 0, $c != 0, $d != 0,
				$e != 0, $f != 0, $g != 0, $h != 0,
			)),*]
		))
	};
	(LocalBits, $typ:ty as $uint:ident; $(
		$a:expr, $b:expr, $c:expr, $d:expr,
		$e:expr, $f:expr, $g:expr, $h:expr
	),*) => {
		<$typ as From<$uint>>::from($crate::__ty_from_bytes!(
			LocalBits, $uint, [$($crate::macros::internal::u8_from_ne_bits(
				$a != 0, $b != 0, $c != 0, $d != 0,
				$e != 0, $f != 0, $g != 0, $h != 0,
			)),*]
		))
	};
	//  Otherwise, invoke `BitOrder` for each bit and accumulate.
	($ord:tt, $typ:ty as $uint:ident; $($bit:expr),* $(,)?) => {{
		let mut tmp: $uint = 0;
		let _bits = $crate::slice::BitSlice::<$ord, $uint>::from_element_mut(
			&mut tmp
		);
		let mut _idx = 0;
		$( _bits.set(_idx, $bit != 0); _idx += 1; )*
		<$typ as From<$uint>>::from(tmp)
	}};
}

/// Extend a single bit to fill an element.
#[doc(hidden)]
#[macro_export]
macro_rules! __extend_bool {
	($val:expr, $typ:tt) => {
		$typ::from([
			<<$typ as BitStore>::Mem as $crate::macros::internal::funty::IsInteger>::ZERO,
			<<$typ as BitStore>::Mem as $crate::mem::BitRegister>::ALL,
		][($val != 0) as usize])
	};
}

/// Constructs a fundamental integer from a list of bytes.
#[doc(hidden)]
#[macro_export]
macro_rules! __ty_from_bytes {
	(Msb0, u8, [$($byte:expr),*]) => {
		u8::from_be_bytes([$($byte),*])
	};
	(Lsb0, u8, [$($byte:expr),*]) => {
		u8::from_le_bytes([$($byte),*])
	};
	(LocalBits, u8, [$($byte:expr),*]) => {
		u8::from_ne_bytes([$($byte),*])
	};
	(Msb0, u16, [$($byte:expr),*]) => {
		u16::from_be_bytes([$($byte),*])
	};
	(Lsb0, u16, [$($byte:expr),*]) => {
		u16::from_le_bytes([$($byte),*])
	};
	(LocalBits, u16, [$($byte:expr),*]) => {
		u16::from_ne_bytes([$($byte),*])
	};
	(Msb0, u32, [$($byte:expr),*]) => {
		u32::from_be_bytes([$($byte),*])
	};
	(Lsb0, u32, [$($byte:expr),*]) => {
		u32::from_le_bytes([$($byte),*])
	};
	(LocalBits, u32, [$($byte:expr),*]) => {
		u32::from_ne_bytes([$($byte),*])
	};
	(Msb0, u64, [$($byte:expr),*]) => {
		u64::from_be_bytes([$($byte),*])
	};
	(Lsb0, u64, [$($byte:expr),*]) => {
		u64::from_le_bytes([$($byte),*])
	};
	(LocalBits, u64, [$($byte:expr),*]) => {
		u64::from_ne_bytes([$($byte),*])
	};
	(Msb0, usize, [$($byte:expr),*]) => {
		usize::from_be_bytes([$($byte),*])
	};
	(Lsb0, usize, [$($byte:expr),*]) => {
		usize::from_le_bytes([$($byte),*])
	};
	(LocalBits, usize, [$($byte:expr),*]) => {
		usize::from_ne_bytes([$($byte),*])
	};
}

/// Construct a `u8` from bits applied in Lsb0-order.
#[allow(clippy::many_single_char_names)]
#[allow(clippy::too_many_arguments)]
pub const fn u8_from_le_bits(
	a: bool,
	b: bool,
	c: bool,
	d: bool,
	e: bool,
	f: bool,
	g: bool,
	h: bool,
) -> u8 {
	(a as u8)
		| ((b as u8) << 1)
		| ((c as u8) << 2)
		| ((d as u8) << 3)
		| ((e as u8) << 4)
		| ((f as u8) << 5)
		| ((g as u8) << 6)
		| ((h as u8) << 7)
}

/// Construct a `u8` from bits applied in Msb0-order.
#[allow(clippy::many_single_char_names)]
#[allow(clippy::too_many_arguments)]
pub const fn u8_from_be_bits(
	a: bool,
	b: bool,
	c: bool,
	d: bool,
	e: bool,
	f: bool,
	g: bool,
	h: bool,
) -> u8 {
	(h as u8)
		| ((g as u8) << 1)
		| ((f as u8) << 2)
		| ((e as u8) << 3)
		| ((d as u8) << 4)
		| ((c as u8) << 5)
		| ((b as u8) << 6)
		| ((a as u8) << 7)
}

#[doc(hidden)]
#[cfg(target_endian = "little")]
pub use self::u8_from_le_bits as u8_from_ne_bits;

#[doc(hidden)]
#[cfg(target_endian = "big")]
pub use self::u8_from_be_bits as u8_from_ne_bits;

#[doc(hidden)]
#[cfg(not(tarpaulin_include))]
#[deprecated = "Ordering-only macro constructors are deprecated. Specify a \
                storage type as well, or remove the ordering and use the \
                default."]
pub const fn __deprecated_order_no_store() {
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn byte_assembly() {
		assert_eq!(
			u8_from_le_bits(false, false, true, true, false, true, false, true),
			0b1010_1100
		);

		assert_eq!(
			u8_from_be_bits(false, false, true, true, false, true, false, true),
			0b0011_0101
		);
	}
}