1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//! Port of the `[T]` operator implementations.

use crate::{
	access::BitAccess,
	domain::DomainMut,
	order::BitOrder,
	slice::{
		BitSlice,
		BitSliceIndex,
	},
	store::BitStore,
};

use core::ops::{
	BitAndAssign,
	BitOrAssign,
	BitXorAssign,
	Index,
	IndexMut,
	Not,
	Range,
	RangeFrom,
	RangeFull,
	RangeInclusive,
	RangeTo,
	RangeToInclusive,
};

impl<O, T, Rhs> BitAndAssign<Rhs> for BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
	Rhs: IntoIterator<Item = bool>,
{
	fn bitand_assign(&mut self, rhs: Rhs) {
		let mut iter = rhs.into_iter();
		self.for_each(|_, bit| bit & iter.next().unwrap_or(false));
	}
}

impl<O, T, Rhs> BitOrAssign<Rhs> for BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
	Rhs: IntoIterator<Item = bool>,
{
	fn bitor_assign(&mut self, rhs: Rhs) {
		let mut iter = rhs.into_iter();
		self.for_each(|_, bit| bit | iter.next().unwrap_or(false));
	}
}

impl<O, T, Rhs> BitXorAssign<Rhs> for BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
	Rhs: IntoIterator<Item = bool>,
{
	fn bitxor_assign(&mut self, rhs: Rhs) {
		let mut iter = rhs.into_iter();
		self.for_each(|_, bit| bit ^ iter.next().unwrap_or(false));
	}
}

impl<O, T> Index<usize> for BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	type Output = bool;

	/// Looks up a single bit by semantic index.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![Msb0, u8; 0, 1, 0];
	/// assert!(!bits[0]); // -----^  |  |
	/// assert!( bits[1]); // --------^  |
	/// assert!(!bits[2]); // -----------^
	/// ```
	///
	/// If the index is greater than or equal to the length, indexing will
	/// panic.
	///
	/// The below test will panic when accessing index 1, as only index 0 is
	/// valid.
	///
	/// ```rust,should_panic
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0,  ];
	/// bits[1]; // --------^
	/// ```
	fn index(&self, index: usize) -> &Self::Output {
		//  Convert the `BitRef` to `&'static bool`
		match *index.index(self) {
			true => &true,
			false => &false,
		}
	}
}

/// Generate `Index`/`Mut` implementations for subslicing.
macro_rules! index {
	($($t:ty),+ $(,)?) => { $(
		impl<O, T> Index<$t> for BitSlice<O, T>
		where
			O: BitOrder,
			T: BitStore,
		{
			type Output = Self;

			fn index(&self, index: $t) -> &Self::Output {
				index.index(self)
			}
		}

		impl<O, T> IndexMut<$t> for BitSlice<O, T>
		where
			O: BitOrder,
			T: BitStore,
		{
			fn index_mut(&mut self, index: $t) -> &mut Self::Output {
				index.index_mut(self)
			}
		}
	)+ };
}

//  Implement `Index`/`Mut` subslicing with all the ranges.
index!(
	Range<usize>,
	RangeFrom<usize>,
	RangeFull,
	RangeInclusive<usize>,
	RangeTo<usize>,
	RangeToInclusive<usize>,
);

impl<'a, O, T> Not for &'a mut BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	type Output = Self;

	fn not(self) -> Self::Output {
		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => {
				elem.invert_bits(O::mask(head, tail));
			},
			DomainMut::Region { head, body, tail } => {
				if let Some((head, elem)) = head {
					elem.invert_bits(O::mask(head, None));
				}
				for elem in body {
					elem.store_value(!elem.load_value());
				}
				if let Some((elem, tail)) = tail {
					elem.invert_bits(O::mask(None, tail));
				}
			},
		}
		self
	}
}