1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
/*! A dynamically-allocated buffer containing a [`BitSlice`] region.

You can read the standard library’s [`alloc::vec` module documentation][std]
here.

This module defines the [`BitVec`] buffer, and all of its associated support
code.

[`BitVec`] is equivalent to [`Vec<bool>`], in its operation and in its
relationship to the [`BitSlice`] type. Most of the interesting work to be done
on a bit-sequence is implemented in `BitSlice`, to which `BitVec` dereferences,
and the vector container itself only exists to maintain ownership, implement
dynamic resizing, and provide some specializations that cannot safely be done on
`BitSlice` alone.

[`BitSlice`]: crate::slice::BitSlice
[`BitVec`]: crate::vec::BitVec
[`Vec<bool>`]: alloc::vec::Vec
[std]: mod@alloc::vec
!*/

#![cfg(feature = "alloc")]

use crate::{
	boxed::BitBox,
	domain::Domain,
	index::BitIdx,
	mem::{
		BitMemory,
		BitRegister,
	},
	mutability::{
		Const,
		Mut,
	},
	order::{
		BitOrder,
		Lsb0,
	},
	ptr::{
		BitPtr,
		BitSpan,
	},
	slice::BitSlice,
	store::BitStore,
};

use alloc::vec::Vec;

use core::{
	mem::{
		self,
		ManuallyDrop,
	},
	slice,
};

use funty::IsInteger;

use tap::{
	pipe::Pipe,
	tap::Tap,
};

/** A contiguous growable array of bits.

This is a managed, heap-allocated, buffer that contains a [`BitSlice`] region.
It is analagous to [`Vec<bool>`], and is written to be very nearly a drop-in
replacement for it. This type contains little interesting behavior in its own
right; most of its behavior is provided by dereferencing to its managed
[`BitSlice`] buffer. It instead serves primarily as an interface to the
allocator, and has some specialized behaviors for its fully-owned memory buffer.

# Documentation

All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.

These sections look like this:

# Original

[`Vec<T>`](alloc::vec::Vec)

# API Differences

The buffer type [`Vec<bool>`] has no type parameters. `BitVec<O, T>` has the
same two type parameters as [`BitSlice<O, T>`][`BitSlice`]. Otherwise, `BitVec`
is able to implement the full API surface of `Vec<bool>`.

# Examples

Because `BitVec` takes type parameters, but has default type arguments for them,
you will need to specify its type parameters when using its associated
functions. The easiest way to do this is to declare bindings type as `: BitVec`,
which uses the default type arguments.

```rust
use bitvec::prelude::*;

let mut bv: BitVec = BitVec::new();
bv.push(false);
bv.push(true);

assert_eq!(bv.len(), 2);
assert_eq!(bv[0], false);

assert_eq!(bv.pop(), Some(true));
assert_eq!(bv.len(), 1);

// `BitVec` cannot yet support `[]=` write indexing.
*bv.get_mut(0).unwrap() = true;
assert_eq!(bv[0], true);

bv.extend(bits![0, 1, 0]);

for bit in &bv {
  println!("{}", bit);
}
assert_eq!(bv, bits![1, 0, 1, 0]);
```

The [`bitvec!`] macro is provided to make initialization more convenient:

```rust
use bitvec::prelude::*;

let mut bv = bitvec![0, 0, 1];
bv.push(true);
assert_eq!(bv, bits![0, 0, 1, 1]);
```

It has the same argument syntax as [`vec!`]. In addition, it can take type
arguments for ordering and storage:

```rust
use bitvec::prelude::*;

let bv = bitvec![Msb0, u16; 1; 30];
assert!(bv.all());
assert_eq!(bv.len(), 30);
```

# Indexing

The `BitVec` type allows you to access bits by index, because it implements the
[`Index`] trait. However, because [`IndexMut`] requires producing an `&mut bool`
reference, it cannot implement `[]=` index assignment syntax. Instead, you must
use [`get_mut`] or [`get_unchecked_mut`] to produce proxy types that can serve
the same purpose.

# Slicing

A `BitVec` is resizable, while [`BitSlice`] is a fixed-size view of a buffer.
Just as with ordinary [`Vec`]s and slices, you can get a `BitSlice` from a
`BitVec` by borrowing it:

```rust
use bitvec::prelude::*;

fn read_bitslice(slice: &BitSlice) {
  // …
}

let bv = bitvec![0; 30];
read_bitslice(&bv);

// … and that’s all!
// you can also do it like this:
let x: &BitSlice = &bv;
```

As with ordinary Rust types, you should prefer passing bit-slices rather than
buffers when you just want to inspect the data, and not manage the underlying
memory region.

# Behavior

Because `BitVec` is a fully-owned buffer, it is able to operate on its memory
without concern for any other views that may alias. This enables it to
specialize some [`BitSlice`] behavior to be faster or more efficient. However,
`BitVec` is *not* restricted to only using unaliased integer storage, and
technically permits the construction of `BitVec<_, AtomicType>`.

This restriction is extremely awkward and constraining to write in the library,
and clients will probably never attempt to construct them, but the possibility
is still present. Be aware of this possibility when using generic code to
convert from `BitSlice` to `BitVec`. Fully-typed code does not need to be
concerned with this possibility.

# Capacity and Reällocation

The capacity of a bit-vector is the amount of space allocated for any future
bits that will be added onto the vector. This is not to be confused with the
*length* of a vector, which specifies the number of actual bits within the
vector. If a vector’s length exceeds its capacity, its capacity will
automatically be increased, but its buffer will have to be reällocated

For example, a bit-vector with capacity 64 and length 0 would be an empty vector
with space for 64 more bits. Pushing 64 or fewer bits onto the vector will not
change its capacity or cause reällocation to occur. However, if the vector’s
length is increased to 65, it *may* have to reällocate, which can be slow. For
this reason, it is recommended to use [`BitVec::with_capacity`] whenever
possible to specify how big the vector is expected to get.

# Safety

Like [`BitSlice`], `BitVec` is exactly equal in size to [`Vec`], and is also
absolutely representation-incompatible with it. You must never attempt to
type-cast between `Vec<T>` and `BitVec` in any way, nor attempt to modify the
memory value of a `BitVec` handle. Doing so will cause allocator and memory
errors in your program, likely inducing a panic.

Everything in the `BitVec` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety than their equivalent items in the standard library.
All `unsafe` APIs will have documentation explicitly detailing what the API
requires you to uphold in order for it to function safely and correctly. All
safe APIs will do so themselves.

# Performance

The choice of [`BitStore`] type parameter can impact your vector’s performance,
as the allocator operates in units of `T` rather than in bits. This means that
larger register types will increase the amount of memory reserved in each call
to the allocator, meaning fewer calls to [`push`] will actually cause a
reällocation. In addition, iteration over the vector is governed by the
[`BitSlice`] characteristics on the type parameter. You are generally better off
using larger types when your vector is a data collection rather than a specific
I/O protocol buffer.

# Macro Construction

Heap allocation can only occur at runtime, but the [`bitvec!`] macro will
construct an appropriate [`BitSlice`] buffer at compile-time, and at run-time,
only copy the buffer into a heap allocation.

[`BitStore`]: crate::store::BitStore
[`BitSlice`]: crate::slice::BitSlice
[`BitVec::with_capacity`]: Self::with_capacity
[`Index`]: core::ops::Index
[`IndexMut`]: core::ops::IndexMut
[`Vec`]: alloc::vec::Vec
[`Vec<bool>`]: alloc::vec::Vec
[`bitvec!`]: macro@crate::bitvec
[`vec!`]: macro@alloc::vec
[`get_mut`]: crate::slice::BitSlice::get_mut
[`get_unchecked_mut`]: crate::slice::BitSlice::get_unchecked_mut
[`push`]: Self::push
**/
#[repr(C)]
pub struct BitVec<O = Lsb0, T = usize>
where
	O: BitOrder,
	T: BitStore,
{
	/// Region pointer describing the live portion of the owned buffer.
	bitspan: BitSpan<Mut, O, T>,
	/// Allocated capacity, in elements `T`, of the owned buffer.
	capacity: usize,
}

/// General-purpose functions not present on `Vec<T>`.
impl<O, T> BitVec<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Constructs a `BitVec` from a value repeated many times.
	///
	/// This function is equivalent to the `bitvec![O, T; bit; len]` [macro]
	/// call, and is in fact the implementation of that macro syntax.
	///
	/// # Parameters
	///
	/// - `bit`: The bit value to which all `len` allocated bits will be set.
	/// - `len`: The number of live bits in the constructed `BitVec`.
	///
	/// # Returns
	///
	/// A `BitVec` with `len` live bits, all set to `bit`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = BitVec::<Msb0, u8>::repeat(true, 20);
	/// assert_eq!(bv, bits![1; 20]);
	/// ```
	///
	/// [macro]: macro@crate::bitvec
	#[inline]
	pub fn repeat(bit: bool, len: usize) -> Self {
		let mut out = Self::with_capacity(len);
		unsafe {
			out.set_len(len);
		}
		out.set_elements(if bit { T::Mem::ALL } else { T::Mem::ZERO });
		out
	}

	/// Copies the contents of a [`BitSlice`] into a new allocation.
	///
	/// This is an exact copy: the newly-created bit-vector is initialized with
	/// a direct copy of the `slice`’s underlying contents, and its handle is
	/// set to use `slice`’s head index. Slices that do not begin at the zeroth
	/// bit of the base element will thus create misaligned vectors.
	///
	/// You can move the bit-vector contents down to begin at the zero index of
	/// the bit-vector’s buffer with [`force_align`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 1, 1, 0, 1, 1];
	/// let bv = BitVec::from_bitslice(&bits[2 ..]);
	/// assert_eq!(bv, bits[2 ..]);
	/// assert_eq!(bits.as_slice(), bv.as_raw_slice());
	/// ```
	///
	/// [`BitSlice`]: crate::slice::BitSlice
	/// [`force_align`]: Self::force_align
	#[inline]
	pub fn from_bitslice(slice: &BitSlice<O, T>) -> Self {
		let mut bitspan = slice.as_bitspan();

		let mut vec = bitspan
			.elements()
			.pipe(Vec::with_capacity)
			.pipe(ManuallyDrop::new);

		match slice.domain() {
			Domain::Enclave { elem, .. } => vec.push(elem.load_value()),
			Domain::Region { head, body, tail } => {
				if let Some((_, elem)) = head {
					vec.push(elem.load_value());
				}
				vec.extend(body.iter().map(BitStore::load_value));
				if let Some((elem, _)) = tail {
					vec.push(elem.load_value());
				}
			},
		}

		let bitspan = unsafe {
			bitspan.set_address(vec.as_ptr() as *const T);
			bitspan.assert_mut()
		};

		let capacity = vec.capacity();
		Self { bitspan, capacity }
	}

	/// Converts a [`Vec<T>`] into a `BitVec<O, T>` without copying its buffer.
	///
	/// # Parameters
	///
	/// - `vec`: A vector to view as bits.
	///
	/// # Returns
	///
	/// A `BitVec` over the `vec` buffer.
	///
	/// # Panics
	///
	/// This panics if `vec` is too long to convert into a `BitVec`. See
	/// [`BitSlice::MAX_ELTS`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let vec = vec![0u8; 4];
	/// let bv = BitVec::<LocalBits, _>::from_vec(vec);
	/// assert_eq!(bv, bits![0; 32]);
	/// ```
	///
	/// [`BitSlice::MAX_ELTS`]: crate::slice::BitSlice::MAX_ELTS
	/// [`Vec<T>`]: alloc::vec::Vec
	#[inline]
	pub fn from_vec(vec: Vec<T>) -> Self {
		Self::try_from_vec(vec)
			.expect("Vector was too long to be converted into a `BitVec`")
	}

	/// Converts a [`Vec<T>`] into a `BitVec<O, T>` without copying its buffer.
	///
	/// This method takes ownership of a memory buffer and enables it to be used
	/// as a bit-vector. Because [`Vec`] can be longer than `BitVec`s, this is a
	/// fallible method, and the original vector will be returned if it cannot
	/// be converted.
	///
	/// # Parameters
	///
	/// - `vec`: Some vector of memory, to be viewed as bits.
	///
	/// # Returns
	///
	/// If `vec` is short enough to be viewed as a `BitVec`, then this returns
	/// a `BitVec` over the `vec` buffer. If `vec` is too long, then this
	/// returns `vec` unmodified.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let vec = vec![0u8; 4];
	/// let bv = BitVec::<LocalBits, _>::try_from_vec(vec).unwrap();
	/// assert_eq!(bv, bits![0; 32]);
	/// ```
	///
	/// An example showing this function failing would require an allocation
	/// exceeding `!0usize >> 3` bytes in size, which is infeasible to produce.
	///
	/// [`Vec`]: alloc::vec::Vec
	/// [`Vec<T>`]: alloc::vec::Vec
	#[inline]
	pub fn try_from_vec(vec: Vec<T>) -> Result<Self, Vec<T>> {
		let mut vec = ManuallyDrop::new(vec);
		let capacity = vec.capacity();

		BitPtr::from_mut_slice(vec.as_mut_slice())
			.span(vec.len() * T::Mem::BITS as usize)
			.map(|bitspan| Self { bitspan, capacity })
			.map_err(|_| ManuallyDrop::into_inner(vec))
	}

	/// Copies all bits in a [`BitSlice`] into the `BitVec`.
	///
	/// # Original
	///
	/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
	///
	/// # Type Parameters
	///
	/// This can extend from a [`BitSlice`] of any type arguments. Where the
	/// source `&BitSlice` matches `self`’s type parameters, the implementation
	/// is able to attempt to accelerate the copy; however, if the type
	/// parameters do not match, then the implementation falls back to a
	/// bit-by-bit iteration and is equivalent to the `Extend` implementation.
	///
	/// You should only use this method when the type parameters match and there
	/// is a possibility of copy acceleration. Otherwise, `.extend()` is the
	/// correct API.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![0, 1];
	/// bv.extend_from_bitslice(bits![1, 1, 0, 1]);
	///
	/// assert_eq!(bv, bits![0, 1, 1, 1, 0, 1]);
	/// ```
	///
	/// [`BitSlice`]: crate::slice::BitSlice
	//  Implementation note: per #85, users want this method to stay generic.
	#[inline]
	pub fn extend_from_bitslice<O2, T2>(&mut self, other: &BitSlice<O2, T2>)
	where
		O2: BitOrder,
		T2: BitStore,
	{
		let len = self.len();
		let olen = other.len();
		self.resize(len + olen, false);
		unsafe { self.get_unchecked_mut(len ..) }.clone_from_bitslice(other);
	}

	/// Appends a slice of elements `T` to the `BitVec`.
	///
	/// The `slice` is interpreted as a `BitSlice<O, T>`, then appended directly
	/// to the bit-vector.
	///
	/// # Original
	///
	/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
	#[inline]
	pub fn extend_from_raw_slice(&mut self, slice: &[T]) {
		self.extend_from_bitslice(
			BitSlice::<O, T>::from_slice(slice)
				.expect("Slice is too long to encode as a BitSlice"),
		);
	}

	/// Gets the number of elements `T` that contain live bits of the
	/// bit-vector.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![LocalBits, u16; 1; 50];
	/// assert_eq!(bv.elements(), 4);
	/// ```
	#[inline]
	pub fn elements(&self) -> usize {
		self.as_bitspan().elements()
	}

	/// Converts the bit-vector into [`BitBox<O, T>`].
	///
	/// Note that this will drop any excess capacity.
	///
	/// # Original
	///
	/// [`Vec::into_boxed_slice`](alloc::vec::Vec::into_boxed_slice)
	///
	/// # API Differences
	///
	/// This returns a `bitvec` boxed bit-slice, not a standard boxed slice. To
	/// convert the underlying buffer into a boxed element slice, use
	/// `.into_boxed_bitslice().into_boxed_slice()`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![0, 1, 0, 0, 1];
	/// let bitslice = bv.into_boxed_slice();
	/// ```
	///
	/// Any excess capacity is removed:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv: BitVec = BitVec::with_capacity(100);
	/// bv.extend([0, 1, 0, 0, 1].iter().copied());
	///
	/// assert!(bv.capacity() >= 100);
	/// let bs = bv.into_boxed_bitslice();
	/// assert!(bs.into_bitvec().capacity() >= 5);
	/// ```
	///
	/// [`BitBox<O, T>`]: crate::boxed::BitBox
	#[inline]
	pub fn into_boxed_bitslice(mut self) -> BitBox<O, T> {
		let mut bitspan = self.as_mut_bitspan();
		let mut boxed =
			self.into_vec().into_boxed_slice().pipe(ManuallyDrop::new);
		unsafe {
			bitspan.set_address(boxed.as_mut_ptr());
			BitBox::from_raw(bitspan.to_bitslice_ptr_mut())
		}
	}

	/// Removes the bit-precision view, returning the underlying [`Vec`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Lsb0, u8; 0, 1, 0, 0, 1];
	/// let vec = bv.into_vec();
	/// assert_eq!(vec, &[18]);
	/// ```
	///
	/// [`Vec`]: alloc::vec::Vec
	#[inline]
	pub fn into_vec(self) -> Vec<T> {
		let (bitspan, capacity) = (self.bitspan, self.capacity);
		mem::forget(self);
		unsafe {
			Vec::from_raw_parts(
				bitspan.address().to_mut(),
				bitspan.elements(),
				capacity,
			)
		}
	}

	/// Writes a value into every element that the bit-vector considers live.
	///
	/// This unconditionally writes `element` into each live location in the
	/// backing buffer, without altering the `BitVec`’s length or capacity.
	///
	/// It is unspecified what effects this has on the allocated but dead
	/// elements in the buffer. You may not rely on them being zeroed *or* being
	/// set to the `value` integer.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `element`: The value which will be written to each live location in
	///   the bit-vector’s buffer.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![LocalBits, u8; 0; 10];
	/// assert_eq!(bv.as_raw_slice(), [0, 0]);
	/// bv.set_elements(0xA5);
	/// assert_eq!(bv.as_raw_slice(), [0xA5, 0xA5]);
	/// ```
	#[inline]
	pub fn set_elements(&mut self, element: T::Mem) {
		self.as_mut_raw_slice()
			.iter_mut()
			.for_each(|elt| elt.store_value(element));
	}

	/// Sets the uninitialized bits of the bit-vector to a fixed value.
	///
	/// This method modifies all bits in the allocated buffer that are outside
	/// the [`as_bitslice`] view so that they have a consistent value. This can
	/// be used to zero the uninitialized memory so that when viewed as a raw
	/// memory slice, bits outside the live region have a predictable value.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = 220u8.view_bits::<Lsb0>().to_bitvec();
	/// assert_eq!(bv.as_raw_slice(), &[220u8]);
	///
	/// bv.truncate(4);
	/// assert_eq!(bv.count_ones(), 2);
	/// assert_eq!(bv.as_raw_slice(), &[220u8]);
	///
	/// bv.set_uninitialized(false);
	/// assert_eq!(bv.as_raw_slice(), &[12u8]);
	///
	/// bv.set_uninitialized(true);
	/// assert_eq!(bv.as_raw_slice(), &[!3u8]);
	/// ```
	///
	/// [`as_bitslice`]: Self::as_bitslice
	#[inline]
	pub fn set_uninitialized(&mut self, value: bool) {
		let head = self.as_bitspan().head().value() as usize;
		let tail = head + self.len();
		let capa = self.capacity();
		let mut bp = self.as_mut_bitspan();
		unsafe {
			bp.set_head(BitIdx::ZERO);
			bp.set_len(capa);
			let bits = bp.to_bitslice_mut();
			bits.get_unchecked_mut(.. head).set_all(value);
			bits.get_unchecked_mut(tail ..).set_all(value);
		}
	}

	/// Ensures that the live region of the bit-vector’s contents begins at the
	/// leading edge of the buffer.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = 0x3Cu8;
	/// let bits = data.view_bits::<Msb0>();
	///
	/// let mut bv = bits[2 .. 6].to_bitvec();
	/// assert_eq!(bv, bits[2 .. 6]);
	/// assert_eq!(bv.as_raw_slice()[0], data);
	///
	/// bv.force_align();
	/// assert_eq!(bv, bits[2 .. 6]);
	/// // It is not specified what happens
	/// // to bits that are no longer used.
	/// assert_eq!(bv.as_raw_slice()[0] & 0xF0, 0xF0);
	/// ```
	#[inline]
	pub fn force_align(&mut self) {
		let bitspan = self.as_mut_bitspan();
		let head = bitspan.head().value() as usize;
		if head == 0 {
			return;
		}
		let last = bitspan.len() + head;
		unsafe {
			self.bitspan = bitspan.tap_mut(|bp| bp.set_head(BitIdx::ZERO));
			self.copy_within_unchecked(head .. last, 0);
		}
	}

	/// Writes a new length value into the pointer without any checks.
	///
	/// # Safety
	///
	/// `new_len` must not exceed `self.capacity() - self.bitspan.head()`.
	#[cfg_attr(not(tarpaulin_include), inline(always))]
	pub(crate) unsafe fn set_len_unchecked(&mut self, new_len: usize) {
		self.bitspan.set_len(new_len);
	}

	/// Extracts a bit-slice containing the entire bit-vector.
	///
	/// Equivalent to `&bv[..]`.
	///
	/// # Original
	///
	/// [`Vec::as_slice`](alloc::vec::Vec::as_slice)
	///
	/// # API Differences
	///
	/// This returns a `bitvec` bit-slice, not a standard slice. To view the
	/// underlying element buffer, use [`as_raw_slice`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![0, 1, 0, 0, 1];
	/// let bits = bv.as_bitslice();
	/// ```
	///
	/// [`as_raw_slice`]: Self::as_raw_slice
	#[cfg_attr(not(tarpaulin_include), inline(always))]
	pub fn as_bitslice(&self) -> &BitSlice<O, T> {
		self.bitspan.to_bitslice_ref()
	}

	/// Extracts a mutable bit-slice of the entire bit-vector.
	///
	/// Equivalent to `&mut bv[..]`.
	///
	/// # Original
	///
	/// [`Vec::as_mut_slice`](alloc::vec::Vec::as_mut_slice)
	///
	/// # API Differences
	///
	/// This returns a `bitvec` bit-slice, not a standard slice. To view the
	/// underlying element buffer, use [`as_mut_raw_slice`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![0, 1, 0, 0, 1];
	/// let bits = bv.as_mut_bitslice();
	/// ```
	///
	/// [`as_mut_raw_slice`]: Self::as_mut_raw_slice
	#[cfg_attr(not(tarpaulin_include), inline(always))]
	pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, T> {
		self.bitspan.to_bitslice_mut()
	}

	/// Returns a raw pointer to the bit-vector’s buffer.
	///
	/// The caller must ensure that the bit-vector outlives the bit-pointer this
	/// function returns, or else it will end up pointing to garbage. Modifying
	/// the bit-vector may cause its buffer to be reällocated, which would also
	/// make any bit-pointers to it invalid.
	///
	/// The caller must also ensure that the memory the bit-pointer
	/// (non-transitively) points to is never written to (except inside an
	/// [`UnsafeCell`]) using this bit-pointer or any bit-pointer derived from
	/// it. If you need to mutate the contents of the buffer, use
	/// [`as_mut_bitptr`].
	///
	/// # Original
	///
	/// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr)
	///
	/// # API Differences
	///
	/// This returns a `bitvec` bit-pointer, not a standard pointer. To take the
	/// address of the underlying element buffer, use [`as_raw_ptr`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![0, 1, 0, 0, 1];
	/// let bp = bv.as_bitptr();
	///
	/// unsafe {
	///   for i in 0 .. bv.len() {
	///     assert_eq!(bp.add(i).read(), bv[i]);
	///   }
	/// }
	/// ```
	///
	/// [`UnsafeCell`]: core::cell::UnsafeCell
	/// [`as_raw_ptr`]: Self::as_raw_ptr
	/// [`as_mut_bitptr`]: Self::as_mut_bitptr
	#[inline]
	pub fn as_bitptr(&self) -> BitPtr<Const, O, T> {
		self.bitspan.as_bitptr().immut()
	}

	/// Returns an unsafe mutable bit-pointer to the bit-vector’s region.
	///
	/// The caller must ensure that the bit-vector outlives the bit-pointer this
	/// function returns, or else it will end up pointing to garbage. Modifying
	/// the bit-vector may cause its buffer to be reällocated, which would also
	/// make any bit-pointers to it invalid.
	///
	/// # Original
	///
	/// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr)
	///
	/// # API Differences
	///
	/// This returns a `bitvec` bit-pointer, not a standard pointer. To take the
	/// address of the underlying element buffer, use [`as_mut_raw_ptr`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = BitVec::<Msb0, u8>::with_capacity(4);
	/// let bp = bv.as_mut_bitptr();
	/// unsafe {
	///   for i in 0 .. 4 {
	///     bp.add(i).write(true);
	///   }
	///   bv.set_len(4);
	/// }
	/// assert_eq!(bv, bits![1; 4]);
	/// ```
	///
	/// [`as_mut_raw_ptr`]: Self::as_mut_raw_ptr
	#[cfg_attr(not(tarpaulin_include), inline(always))]
	pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, O, T> {
		self.bitspan.as_bitptr()
	}

	/// Views the underlying buffer as a shared element slice.
	///
	/// # Original
	///
	/// [`Vec::as_slice`](alloc::vec::Vec::as_slice)
	///
	/// # API Differences
	///
	/// This method is renamed in order to emphasize the semantic distinction
	/// between borrowing the bit-vector contents, and borrowing the memory that
	/// implements the collection contents.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 1, 0, 1];
	/// let raw = bv.as_raw_slice();
	/// assert_eq!(raw, &[0x4D]);
	/// ```
	#[inline]
	pub fn as_raw_slice(&self) -> &[T] {
		unsafe {
			slice::from_raw_parts(
				self.bitspan.address().to_const(),
				self.bitspan.elements(),
			)
		}
	}

	/// Views the underlying buffer as an exclusive element slice.
	///
	/// # Original
	///
	/// [`Vec::as_mut_slice`](alloc::vec::Vec::as_mut_slice)
	///
	/// # API Differences
	///
	/// This method is renamed in order to emphasize the semantic distinction
	/// between borrowing the bit-vector contents, and borrowing the memory that
	/// implements the collection contents.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 1, 0, 1];
	/// let raw = bv.as_mut_raw_slice();
	/// assert_eq!(raw, &[0x4D]);
	/// raw[0] = 0xD4;
	/// assert_eq!(bv, bits![1, 1, 0, 1, 0, 1, 0, 0]);
	/// ```
	#[inline]
	pub fn as_mut_raw_slice(&mut self) -> &mut [T] {
		unsafe {
			slice::from_raw_parts_mut(
				self.bitspan.address().to_mut(),
				self.bitspan.elements(),
			)
		}
	}

	/// Returns a raw pointer to the bit-vector’s buffer.
	///
	/// # Original
	///
	/// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr)
	///
	/// # API Differences
	///
	/// This method is renamed in order to emphasize the semantic distinction
	/// between taking a pointer to the start of the bit-vector contents, and
	/// taking a pointer to the underlying memory that implements the collection
	/// contents.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1];
	/// let addr = bv.as_raw_ptr();
	/// ```
	#[inline]
	pub fn as_raw_ptr(&self) -> *const T {
		self.bitspan.address().to_const()
	}

	/// Returns an unsafe mutable pointer to the bit-vector’s buffer.
	///
	/// # Original
	///
	/// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr)
	///
	/// # API Differences
	///
	/// This method is renamed in order to emphasize the semantic distinction
	/// between taking a pointer to the start of the bit-vector contents, and
	/// taking a pointer to the underlying memory that implements the collection
	/// contents.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![0, 1, 0, 0, 1];
	/// let addr = bv.as_mut_raw_ptr();
	/// ```
	#[inline]
	pub fn as_mut_raw_ptr(&mut self) -> *mut T {
		self.bitspan.address().to_mut()
	}

	/// Construct a `BitVec` from its exact fields, rather than using a formal
	/// constructor.
	///
	/// This is used for handle construction elsewhere in the crate, where a
	/// vector allocation and `BitSpan` descriptor exist, and need to be bundled
	/// into a `BitVec` without going through the ordinary construction process.
	///
	/// # Parameters
	///
	/// - `bitspan`: A span descriptor.
	/// - `capacity`: An allocation capacity, measured in `T` elements rather
	///   than in bits.
	///
	/// # Returns
	///
	/// `BitVec { bitspan, capacity }`
	///
	/// # Safety
	///
	/// The arguments must be derived from a known-good buffer allocation and
	/// span description. They will be directly used to construct the returned
	/// bit-vector, and drive all future memory access and allocation control.
	pub(crate) unsafe fn from_fields(
		bitspan: BitSpan<Mut, O, T>,
		capacity: usize,
	) -> Self {
		Self { bitspan, capacity }
	}

	/// Removes the `::Unalias` marker from a bit-vector’s type signature.
	fn strip_unalias(this: BitVec<O, T::Unalias>) -> Self {
		let (bitspan, capacity) = (this.bitspan.cast::<T>(), this.capacity);
		core::mem::forget(this);
		Self { bitspan, capacity }
	}

	/// Combines the logic for `BitVec::reserve` and `BitVec::reserve_exact`.
	#[inline]
	fn do_reservation(
		&mut self,
		additional: usize,
		func: impl FnOnce(&mut Vec<T>, usize),
	) {
		let len = self.len();
		let new_len = len
			.checked_add(additional)
			.expect("Bit-Vector capacity exceeded");
		assert!(
			new_len <= BitSlice::<O, T>::MAX_BITS,
			"Bit-Vector capacity exceeded: {} > {}",
			new_len,
			BitSlice::<O, T>::MAX_BITS,
		);
		let bitspan = self.bitspan;
		let head = bitspan.head();
		let elts = bitspan.elements();
		let new_elts = crate::mem::elts::<T>(head.value() as usize + new_len);
		let extra = new_elts - elts;
		self.with_vec(|vec| {
			func(&mut **vec, extra);
			//  Initialize any newly-allocated elements to zero, without
			//  initializing leftover dead capacity.
			vec.resize_with(new_elts, || unsafe { mem::zeroed() });
		});
	}

	/// Permits manipulation of the underlying vector allocation.
	///
	/// The caller receives a mutable borrow of a `Vec<T>` with its destructor
	/// disarmed. The caller may modify the buffer controls, including its
	/// location and its capacity, and these changes will be committed back into
	/// `self`. Modifications to the referent `[T]` handle, such as length
	/// changes, will not be preserved.
	fn with_vec<F, R>(&mut self, func: F) -> R
	where F: FnOnce(&mut ManuallyDrop<Vec<T>>) -> R {
		let capacity = self.capacity;
		let (ptr, length) =
			(self.bitspan.address().to_mut(), self.bitspan.elements());

		let mut vec = unsafe { Vec::from_raw_parts(ptr, length, capacity) }
			.pipe(ManuallyDrop::new);
		let out = func(&mut vec);

		unsafe {
			self.bitspan.set_address(vec.as_mut_ptr());
		}
		self.capacity = vec.capacity();
		out
	}
}

mod api;
mod iter;
mod ops;
mod traits;

pub use self::iter::{
	Drain,
	IntoIter,
	Splice,
};

#[cfg(test)]
mod tests;