1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*! A dynamically-allocated buffer containing a [`BitSlice`] region.
You can read the standard library’s [`alloc::vec` module documentation][std]
here.
This module defines the [`BitVec`] buffer, and all of its associated support
code.
[`BitVec`] is equivalent to [`Vec<bool>`], in its operation and in its
relationship to the [`BitSlice`] type. Most of the interesting work to be done
on a bit-sequence is implemented in `BitSlice`, to which `BitVec` dereferences,
and the vector container itself only exists to maintain ownership, implement
dynamic resizing, and provide some specializations that cannot safely be done on
`BitSlice` alone.
[`BitSlice`]: crate::slice::BitSlice
[`BitVec`]: crate::vec::BitVec
[`Vec<bool>`]: alloc::vec::Vec
[std]: mod@alloc::vec
!*/
#![cfg(feature = "alloc")]
use crate::{
boxed::BitBox,
domain::Domain,
index::BitIdx,
mem::{
BitMemory,
BitRegister,
},
mutability::{
Const,
Mut,
},
order::{
BitOrder,
Lsb0,
},
ptr::{
BitPtr,
BitSpan,
},
slice::BitSlice,
store::BitStore,
};
use alloc::vec::Vec;
use core::{
mem::{
self,
ManuallyDrop,
},
slice,
};
use funty::IsInteger;
use tap::{
pipe::Pipe,
tap::Tap,
};
/** A contiguous growable array of bits.
This is a managed, heap-allocated, buffer that contains a [`BitSlice`] region.
It is analagous to [`Vec<bool>`], and is written to be very nearly a drop-in
replacement for it. This type contains little interesting behavior in its own
right; most of its behavior is provided by dereferencing to its managed
[`BitSlice`] buffer. It instead serves primarily as an interface to the
allocator, and has some specialized behaviors for its fully-owned memory buffer.
# Documentation
All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.
These sections look like this:
# Original
[`Vec<T>`](alloc::vec::Vec)
# API Differences
The buffer type [`Vec<bool>`] has no type parameters. `BitVec<O, T>` has the
same two type parameters as [`BitSlice<O, T>`][`BitSlice`]. Otherwise, `BitVec`
is able to implement the full API surface of `Vec<bool>`.
# Examples
Because `BitVec` takes type parameters, but has default type arguments for them,
you will need to specify its type parameters when using its associated
functions. The easiest way to do this is to declare bindings type as `: BitVec`,
which uses the default type arguments.
```rust
use bitvec::prelude::*;
let mut bv: BitVec = BitVec::new();
bv.push(false);
bv.push(true);
assert_eq!(bv.len(), 2);
assert_eq!(bv[0], false);
assert_eq!(bv.pop(), Some(true));
assert_eq!(bv.len(), 1);
// `BitVec` cannot yet support `[]=` write indexing.
*bv.get_mut(0).unwrap() = true;
assert_eq!(bv[0], true);
bv.extend(bits![0, 1, 0]);
for bit in &bv {
println!("{}", bit);
}
assert_eq!(bv, bits![1, 0, 1, 0]);
```
The [`bitvec!`] macro is provided to make initialization more convenient:
```rust
use bitvec::prelude::*;
let mut bv = bitvec![0, 0, 1];
bv.push(true);
assert_eq!(bv, bits![0, 0, 1, 1]);
```
It has the same argument syntax as [`vec!`]. In addition, it can take type
arguments for ordering and storage:
```rust
use bitvec::prelude::*;
let bv = bitvec![Msb0, u16; 1; 30];
assert!(bv.all());
assert_eq!(bv.len(), 30);
```
# Indexing
The `BitVec` type allows you to access bits by index, because it implements the
[`Index`] trait. However, because [`IndexMut`] requires producing an `&mut bool`
reference, it cannot implement `[]=` index assignment syntax. Instead, you must
use [`get_mut`] or [`get_unchecked_mut`] to produce proxy types that can serve
the same purpose.
# Slicing
A `BitVec` is resizable, while [`BitSlice`] is a fixed-size view of a buffer.
Just as with ordinary [`Vec`]s and slices, you can get a `BitSlice` from a
`BitVec` by borrowing it:
```rust
use bitvec::prelude::*;
fn read_bitslice(slice: &BitSlice) {
// …
}
let bv = bitvec![0; 30];
read_bitslice(&bv);
// … and that’s all!
// you can also do it like this:
let x: &BitSlice = &bv;
```
As with ordinary Rust types, you should prefer passing bit-slices rather than
buffers when you just want to inspect the data, and not manage the underlying
memory region.
# Behavior
Because `BitVec` is a fully-owned buffer, it is able to operate on its memory
without concern for any other views that may alias. This enables it to
specialize some [`BitSlice`] behavior to be faster or more efficient. However,
`BitVec` is *not* restricted to only using unaliased integer storage, and
technically permits the construction of `BitVec<_, AtomicType>`.
This restriction is extremely awkward and constraining to write in the library,
and clients will probably never attempt to construct them, but the possibility
is still present. Be aware of this possibility when using generic code to
convert from `BitSlice` to `BitVec`. Fully-typed code does not need to be
concerned with this possibility.
# Capacity and Reällocation
The capacity of a bit-vector is the amount of space allocated for any future
bits that will be added onto the vector. This is not to be confused with the
*length* of a vector, which specifies the number of actual bits within the
vector. If a vector’s length exceeds its capacity, its capacity will
automatically be increased, but its buffer will have to be reällocated
For example, a bit-vector with capacity 64 and length 0 would be an empty vector
with space for 64 more bits. Pushing 64 or fewer bits onto the vector will not
change its capacity or cause reällocation to occur. However, if the vector’s
length is increased to 65, it *may* have to reällocate, which can be slow. For
this reason, it is recommended to use [`BitVec::with_capacity`] whenever
possible to specify how big the vector is expected to get.
# Safety
Like [`BitSlice`], `BitVec` is exactly equal in size to [`Vec`], and is also
absolutely representation-incompatible with it. You must never attempt to
type-cast between `Vec<T>` and `BitVec` in any way, nor attempt to modify the
memory value of a `BitVec` handle. Doing so will cause allocator and memory
errors in your program, likely inducing a panic.
Everything in the `BitVec` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety than their equivalent items in the standard library.
All `unsafe` APIs will have documentation explicitly detailing what the API
requires you to uphold in order for it to function safely and correctly. All
safe APIs will do so themselves.
# Performance
The choice of [`BitStore`] type parameter can impact your vector’s performance,
as the allocator operates in units of `T` rather than in bits. This means that
larger register types will increase the amount of memory reserved in each call
to the allocator, meaning fewer calls to [`push`] will actually cause a
reällocation. In addition, iteration over the vector is governed by the
[`BitSlice`] characteristics on the type parameter. You are generally better off
using larger types when your vector is a data collection rather than a specific
I/O protocol buffer.
# Macro Construction
Heap allocation can only occur at runtime, but the [`bitvec!`] macro will
construct an appropriate [`BitSlice`] buffer at compile-time, and at run-time,
only copy the buffer into a heap allocation.
[`BitStore`]: crate::store::BitStore
[`BitSlice`]: crate::slice::BitSlice
[`BitVec::with_capacity`]: Self::with_capacity
[`Index`]: core::ops::Index
[`IndexMut`]: core::ops::IndexMut
[`Vec`]: alloc::vec::Vec
[`Vec<bool>`]: alloc::vec::Vec
[`bitvec!`]: macro@crate::bitvec
[`vec!`]: macro@alloc::vec
[`get_mut`]: crate::slice::BitSlice::get_mut
[`get_unchecked_mut`]: crate::slice::BitSlice::get_unchecked_mut
[`push`]: Self::push
**/
#[repr(C)]
pub struct BitVec<O = Lsb0, T = usize>
where
O: BitOrder,
T: BitStore,
{
/// Region pointer describing the live portion of the owned buffer.
bitspan: BitSpan<Mut, O, T>,
/// Allocated capacity, in elements `T`, of the owned buffer.
capacity: usize,
}
/// General-purpose functions not present on `Vec<T>`.
impl<O, T> BitVec<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Constructs a `BitVec` from a value repeated many times.
///
/// This function is equivalent to the `bitvec![O, T; bit; len]` [macro]
/// call, and is in fact the implementation of that macro syntax.
///
/// # Parameters
///
/// - `bit`: The bit value to which all `len` allocated bits will be set.
/// - `len`: The number of live bits in the constructed `BitVec`.
///
/// # Returns
///
/// A `BitVec` with `len` live bits, all set to `bit`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = BitVec::<Msb0, u8>::repeat(true, 20);
/// assert_eq!(bv, bits![1; 20]);
/// ```
///
/// [macro]: macro@crate::bitvec
#[inline]
pub fn repeat(bit: bool, len: usize) -> Self {
let mut out = Self::with_capacity(len);
unsafe {
out.set_len(len);
}
out.set_elements(if bit { T::Mem::ALL } else { T::Mem::ZERO });
out
}
/// Copies the contents of a [`BitSlice`] into a new allocation.
///
/// This is an exact copy: the newly-created bit-vector is initialized with
/// a direct copy of the `slice`’s underlying contents, and its handle is
/// set to use `slice`’s head index. Slices that do not begin at the zeroth
/// bit of the base element will thus create misaligned vectors.
///
/// You can move the bit-vector contents down to begin at the zero index of
/// the bit-vector’s buffer with [`force_align`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 1, 1, 0, 1, 1];
/// let bv = BitVec::from_bitslice(&bits[2 ..]);
/// assert_eq!(bv, bits[2 ..]);
/// assert_eq!(bits.as_slice(), bv.as_raw_slice());
/// ```
///
/// [`BitSlice`]: crate::slice::BitSlice
/// [`force_align`]: Self::force_align
#[inline]
pub fn from_bitslice(slice: &BitSlice<O, T>) -> Self {
let mut bitspan = slice.as_bitspan();
let mut vec = bitspan
.elements()
.pipe(Vec::with_capacity)
.pipe(ManuallyDrop::new);
match slice.domain() {
Domain::Enclave { elem, .. } => vec.push(elem.load_value()),
Domain::Region { head, body, tail } => {
if let Some((_, elem)) = head {
vec.push(elem.load_value());
}
vec.extend(body.iter().map(BitStore::load_value));
if let Some((elem, _)) = tail {
vec.push(elem.load_value());
}
},
}
let bitspan = unsafe {
bitspan.set_address(vec.as_ptr() as *const T);
bitspan.assert_mut()
};
let capacity = vec.capacity();
Self { bitspan, capacity }
}
/// Converts a [`Vec<T>`] into a `BitVec<O, T>` without copying its buffer.
///
/// # Parameters
///
/// - `vec`: A vector to view as bits.
///
/// # Returns
///
/// A `BitVec` over the `vec` buffer.
///
/// # Panics
///
/// This panics if `vec` is too long to convert into a `BitVec`. See
/// [`BitSlice::MAX_ELTS`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let vec = vec![0u8; 4];
/// let bv = BitVec::<LocalBits, _>::from_vec(vec);
/// assert_eq!(bv, bits![0; 32]);
/// ```
///
/// [`BitSlice::MAX_ELTS`]: crate::slice::BitSlice::MAX_ELTS
/// [`Vec<T>`]: alloc::vec::Vec
#[inline]
pub fn from_vec(vec: Vec<T>) -> Self {
Self::try_from_vec(vec)
.expect("Vector was too long to be converted into a `BitVec`")
}
/// Converts a [`Vec<T>`] into a `BitVec<O, T>` without copying its buffer.
///
/// This method takes ownership of a memory buffer and enables it to be used
/// as a bit-vector. Because [`Vec`] can be longer than `BitVec`s, this is a
/// fallible method, and the original vector will be returned if it cannot
/// be converted.
///
/// # Parameters
///
/// - `vec`: Some vector of memory, to be viewed as bits.
///
/// # Returns
///
/// If `vec` is short enough to be viewed as a `BitVec`, then this returns
/// a `BitVec` over the `vec` buffer. If `vec` is too long, then this
/// returns `vec` unmodified.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let vec = vec![0u8; 4];
/// let bv = BitVec::<LocalBits, _>::try_from_vec(vec).unwrap();
/// assert_eq!(bv, bits![0; 32]);
/// ```
///
/// An example showing this function failing would require an allocation
/// exceeding `!0usize >> 3` bytes in size, which is infeasible to produce.
///
/// [`Vec`]: alloc::vec::Vec
/// [`Vec<T>`]: alloc::vec::Vec
#[inline]
pub fn try_from_vec(vec: Vec<T>) -> Result<Self, Vec<T>> {
let mut vec = ManuallyDrop::new(vec);
let capacity = vec.capacity();
BitPtr::from_mut_slice(vec.as_mut_slice())
.span(vec.len() * T::Mem::BITS as usize)
.map(|bitspan| Self { bitspan, capacity })
.map_err(|_| ManuallyDrop::into_inner(vec))
}
/// Copies all bits in a [`BitSlice`] into the `BitVec`.
///
/// # Original
///
/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
///
/// # Type Parameters
///
/// This can extend from a [`BitSlice`] of any type arguments. Where the
/// source `&BitSlice` matches `self`’s type parameters, the implementation
/// is able to attempt to accelerate the copy; however, if the type
/// parameters do not match, then the implementation falls back to a
/// bit-by-bit iteration and is equivalent to the `Extend` implementation.
///
/// You should only use this method when the type parameters match and there
/// is a possibility of copy acceleration. Otherwise, `.extend()` is the
/// correct API.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![0, 1];
/// bv.extend_from_bitslice(bits![1, 1, 0, 1]);
///
/// assert_eq!(bv, bits![0, 1, 1, 1, 0, 1]);
/// ```
///
/// [`BitSlice`]: crate::slice::BitSlice
// Implementation note: per #85, users want this method to stay generic.
#[inline]
pub fn extend_from_bitslice<O2, T2>(&mut self, other: &BitSlice<O2, T2>)
where
O2: BitOrder,
T2: BitStore,
{
let len = self.len();
let olen = other.len();
self.resize(len + olen, false);
unsafe { self.get_unchecked_mut(len ..) }.clone_from_bitslice(other);
}
/// Appends a slice of elements `T` to the `BitVec`.
///
/// The `slice` is interpreted as a `BitSlice<O, T>`, then appended directly
/// to the bit-vector.
///
/// # Original
///
/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
#[inline]
pub fn extend_from_raw_slice(&mut self, slice: &[T]) {
self.extend_from_bitslice(
BitSlice::<O, T>::from_slice(slice)
.expect("Slice is too long to encode as a BitSlice"),
);
}
/// Gets the number of elements `T` that contain live bits of the
/// bit-vector.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![LocalBits, u16; 1; 50];
/// assert_eq!(bv.elements(), 4);
/// ```
#[inline]
pub fn elements(&self) -> usize {
self.as_bitspan().elements()
}
/// Converts the bit-vector into [`BitBox<O, T>`].
///
/// Note that this will drop any excess capacity.
///
/// # Original
///
/// [`Vec::into_boxed_slice`](alloc::vec::Vec::into_boxed_slice)
///
/// # API Differences
///
/// This returns a `bitvec` boxed bit-slice, not a standard boxed slice. To
/// convert the underlying buffer into a boxed element slice, use
/// `.into_boxed_bitslice().into_boxed_slice()`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![0, 1, 0, 0, 1];
/// let bitslice = bv.into_boxed_slice();
/// ```
///
/// Any excess capacity is removed:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv: BitVec = BitVec::with_capacity(100);
/// bv.extend([0, 1, 0, 0, 1].iter().copied());
///
/// assert!(bv.capacity() >= 100);
/// let bs = bv.into_boxed_bitslice();
/// assert!(bs.into_bitvec().capacity() >= 5);
/// ```
///
/// [`BitBox<O, T>`]: crate::boxed::BitBox
#[inline]
pub fn into_boxed_bitslice(mut self) -> BitBox<O, T> {
let mut bitspan = self.as_mut_bitspan();
let mut boxed =
self.into_vec().into_boxed_slice().pipe(ManuallyDrop::new);
unsafe {
bitspan.set_address(boxed.as_mut_ptr());
BitBox::from_raw(bitspan.to_bitslice_ptr_mut())
}
}
/// Removes the bit-precision view, returning the underlying [`Vec`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![Lsb0, u8; 0, 1, 0, 0, 1];
/// let vec = bv.into_vec();
/// assert_eq!(vec, &[18]);
/// ```
///
/// [`Vec`]: alloc::vec::Vec
#[inline]
pub fn into_vec(self) -> Vec<T> {
let (bitspan, capacity) = (self.bitspan, self.capacity);
mem::forget(self);
unsafe {
Vec::from_raw_parts(
bitspan.address().to_mut(),
bitspan.elements(),
capacity,
)
}
}
/// Writes a value into every element that the bit-vector considers live.
///
/// This unconditionally writes `element` into each live location in the
/// backing buffer, without altering the `BitVec`’s length or capacity.
///
/// It is unspecified what effects this has on the allocated but dead
/// elements in the buffer. You may not rely on them being zeroed *or* being
/// set to the `value` integer.
///
/// # Parameters
///
/// - `&mut self`
/// - `element`: The value which will be written to each live location in
/// the bit-vector’s buffer.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![LocalBits, u8; 0; 10];
/// assert_eq!(bv.as_raw_slice(), [0, 0]);
/// bv.set_elements(0xA5);
/// assert_eq!(bv.as_raw_slice(), [0xA5, 0xA5]);
/// ```
#[inline]
pub fn set_elements(&mut self, element: T::Mem) {
self.as_mut_raw_slice()
.iter_mut()
.for_each(|elt| elt.store_value(element));
}
/// Sets the uninitialized bits of the bit-vector to a fixed value.
///
/// This method modifies all bits in the allocated buffer that are outside
/// the [`as_bitslice`] view so that they have a consistent value. This can
/// be used to zero the uninitialized memory so that when viewed as a raw
/// memory slice, bits outside the live region have a predictable value.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = 220u8.view_bits::<Lsb0>().to_bitvec();
/// assert_eq!(bv.as_raw_slice(), &[220u8]);
///
/// bv.truncate(4);
/// assert_eq!(bv.count_ones(), 2);
/// assert_eq!(bv.as_raw_slice(), &[220u8]);
///
/// bv.set_uninitialized(false);
/// assert_eq!(bv.as_raw_slice(), &[12u8]);
///
/// bv.set_uninitialized(true);
/// assert_eq!(bv.as_raw_slice(), &[!3u8]);
/// ```
///
/// [`as_bitslice`]: Self::as_bitslice
#[inline]
pub fn set_uninitialized(&mut self, value: bool) {
let head = self.as_bitspan().head().value() as usize;
let tail = head + self.len();
let capa = self.capacity();
let mut bp = self.as_mut_bitspan();
unsafe {
bp.set_head(BitIdx::ZERO);
bp.set_len(capa);
let bits = bp.to_bitslice_mut();
bits.get_unchecked_mut(.. head).set_all(value);
bits.get_unchecked_mut(tail ..).set_all(value);
}
}
/// Ensures that the live region of the bit-vector’s contents begins at the
/// leading edge of the buffer.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0x3Cu8;
/// let bits = data.view_bits::<Msb0>();
///
/// let mut bv = bits[2 .. 6].to_bitvec();
/// assert_eq!(bv, bits[2 .. 6]);
/// assert_eq!(bv.as_raw_slice()[0], data);
///
/// bv.force_align();
/// assert_eq!(bv, bits[2 .. 6]);
/// // It is not specified what happens
/// // to bits that are no longer used.
/// assert_eq!(bv.as_raw_slice()[0] & 0xF0, 0xF0);
/// ```
#[inline]
pub fn force_align(&mut self) {
let bitspan = self.as_mut_bitspan();
let head = bitspan.head().value() as usize;
if head == 0 {
return;
}
let last = bitspan.len() + head;
unsafe {
self.bitspan = bitspan.tap_mut(|bp| bp.set_head(BitIdx::ZERO));
self.copy_within_unchecked(head .. last, 0);
}
}
/// Writes a new length value into the pointer without any checks.
///
/// # Safety
///
/// `new_len` must not exceed `self.capacity() - self.bitspan.head()`.
#[cfg_attr(not(tarpaulin_include), inline(always))]
pub(crate) unsafe fn set_len_unchecked(&mut self, new_len: usize) {
self.bitspan.set_len(new_len);
}
/// Extracts a bit-slice containing the entire bit-vector.
///
/// Equivalent to `&bv[..]`.
///
/// # Original
///
/// [`Vec::as_slice`](alloc::vec::Vec::as_slice)
///
/// # API Differences
///
/// This returns a `bitvec` bit-slice, not a standard slice. To view the
/// underlying element buffer, use [`as_raw_slice`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![0, 1, 0, 0, 1];
/// let bits = bv.as_bitslice();
/// ```
///
/// [`as_raw_slice`]: Self::as_raw_slice
#[cfg_attr(not(tarpaulin_include), inline(always))]
pub fn as_bitslice(&self) -> &BitSlice<O, T> {
self.bitspan.to_bitslice_ref()
}
/// Extracts a mutable bit-slice of the entire bit-vector.
///
/// Equivalent to `&mut bv[..]`.
///
/// # Original
///
/// [`Vec::as_mut_slice`](alloc::vec::Vec::as_mut_slice)
///
/// # API Differences
///
/// This returns a `bitvec` bit-slice, not a standard slice. To view the
/// underlying element buffer, use [`as_mut_raw_slice`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![0, 1, 0, 0, 1];
/// let bits = bv.as_mut_bitslice();
/// ```
///
/// [`as_mut_raw_slice`]: Self::as_mut_raw_slice
#[cfg_attr(not(tarpaulin_include), inline(always))]
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, T> {
self.bitspan.to_bitslice_mut()
}
/// Returns a raw pointer to the bit-vector’s buffer.
///
/// The caller must ensure that the bit-vector outlives the bit-pointer this
/// function returns, or else it will end up pointing to garbage. Modifying
/// the bit-vector may cause its buffer to be reällocated, which would also
/// make any bit-pointers to it invalid.
///
/// The caller must also ensure that the memory the bit-pointer
/// (non-transitively) points to is never written to (except inside an
/// [`UnsafeCell`]) using this bit-pointer or any bit-pointer derived from
/// it. If you need to mutate the contents of the buffer, use
/// [`as_mut_bitptr`].
///
/// # Original
///
/// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr)
///
/// # API Differences
///
/// This returns a `bitvec` bit-pointer, not a standard pointer. To take the
/// address of the underlying element buffer, use [`as_raw_ptr`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![0, 1, 0, 0, 1];
/// let bp = bv.as_bitptr();
///
/// unsafe {
/// for i in 0 .. bv.len() {
/// assert_eq!(bp.add(i).read(), bv[i]);
/// }
/// }
/// ```
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
/// [`as_raw_ptr`]: Self::as_raw_ptr
/// [`as_mut_bitptr`]: Self::as_mut_bitptr
#[inline]
pub fn as_bitptr(&self) -> BitPtr<Const, O, T> {
self.bitspan.as_bitptr().immut()
}
/// Returns an unsafe mutable bit-pointer to the bit-vector’s region.
///
/// The caller must ensure that the bit-vector outlives the bit-pointer this
/// function returns, or else it will end up pointing to garbage. Modifying
/// the bit-vector may cause its buffer to be reällocated, which would also
/// make any bit-pointers to it invalid.
///
/// # Original
///
/// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr)
///
/// # API Differences
///
/// This returns a `bitvec` bit-pointer, not a standard pointer. To take the
/// address of the underlying element buffer, use [`as_mut_raw_ptr`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = BitVec::<Msb0, u8>::with_capacity(4);
/// let bp = bv.as_mut_bitptr();
/// unsafe {
/// for i in 0 .. 4 {
/// bp.add(i).write(true);
/// }
/// bv.set_len(4);
/// }
/// assert_eq!(bv, bits![1; 4]);
/// ```
///
/// [`as_mut_raw_ptr`]: Self::as_mut_raw_ptr
#[cfg_attr(not(tarpaulin_include), inline(always))]
pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, O, T> {
self.bitspan.as_bitptr()
}
/// Views the underlying buffer as a shared element slice.
///
/// # Original
///
/// [`Vec::as_slice`](alloc::vec::Vec::as_slice)
///
/// # API Differences
///
/// This method is renamed in order to emphasize the semantic distinction
/// between borrowing the bit-vector contents, and borrowing the memory that
/// implements the collection contents.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 1, 0, 1];
/// let raw = bv.as_raw_slice();
/// assert_eq!(raw, &[0x4D]);
/// ```
#[inline]
pub fn as_raw_slice(&self) -> &[T] {
unsafe {
slice::from_raw_parts(
self.bitspan.address().to_const(),
self.bitspan.elements(),
)
}
}
/// Views the underlying buffer as an exclusive element slice.
///
/// # Original
///
/// [`Vec::as_mut_slice`](alloc::vec::Vec::as_mut_slice)
///
/// # API Differences
///
/// This method is renamed in order to emphasize the semantic distinction
/// between borrowing the bit-vector contents, and borrowing the memory that
/// implements the collection contents.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 1, 0, 1];
/// let raw = bv.as_mut_raw_slice();
/// assert_eq!(raw, &[0x4D]);
/// raw[0] = 0xD4;
/// assert_eq!(bv, bits![1, 1, 0, 1, 0, 1, 0, 0]);
/// ```
#[inline]
pub fn as_mut_raw_slice(&mut self) -> &mut [T] {
unsafe {
slice::from_raw_parts_mut(
self.bitspan.address().to_mut(),
self.bitspan.elements(),
)
}
}
/// Returns a raw pointer to the bit-vector’s buffer.
///
/// # Original
///
/// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr)
///
/// # API Differences
///
/// This method is renamed in order to emphasize the semantic distinction
/// between taking a pointer to the start of the bit-vector contents, and
/// taking a pointer to the underlying memory that implements the collection
/// contents.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1];
/// let addr = bv.as_raw_ptr();
/// ```
#[inline]
pub fn as_raw_ptr(&self) -> *const T {
self.bitspan.address().to_const()
}
/// Returns an unsafe mutable pointer to the bit-vector’s buffer.
///
/// # Original
///
/// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr)
///
/// # API Differences
///
/// This method is renamed in order to emphasize the semantic distinction
/// between taking a pointer to the start of the bit-vector contents, and
/// taking a pointer to the underlying memory that implements the collection
/// contents.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![0, 1, 0, 0, 1];
/// let addr = bv.as_mut_raw_ptr();
/// ```
#[inline]
pub fn as_mut_raw_ptr(&mut self) -> *mut T {
self.bitspan.address().to_mut()
}
/// Construct a `BitVec` from its exact fields, rather than using a formal
/// constructor.
///
/// This is used for handle construction elsewhere in the crate, where a
/// vector allocation and `BitSpan` descriptor exist, and need to be bundled
/// into a `BitVec` without going through the ordinary construction process.
///
/// # Parameters
///
/// - `bitspan`: A span descriptor.
/// - `capacity`: An allocation capacity, measured in `T` elements rather
/// than in bits.
///
/// # Returns
///
/// `BitVec { bitspan, capacity }`
///
/// # Safety
///
/// The arguments must be derived from a known-good buffer allocation and
/// span description. They will be directly used to construct the returned
/// bit-vector, and drive all future memory access and allocation control.
pub(crate) unsafe fn from_fields(
bitspan: BitSpan<Mut, O, T>,
capacity: usize,
) -> Self {
Self { bitspan, capacity }
}
/// Removes the `::Unalias` marker from a bit-vector’s type signature.
fn strip_unalias(this: BitVec<O, T::Unalias>) -> Self {
let (bitspan, capacity) = (this.bitspan.cast::<T>(), this.capacity);
core::mem::forget(this);
Self { bitspan, capacity }
}
/// Combines the logic for `BitVec::reserve` and `BitVec::reserve_exact`.
#[inline]
fn do_reservation(
&mut self,
additional: usize,
func: impl FnOnce(&mut Vec<T>, usize),
) {
let len = self.len();
let new_len = len
.checked_add(additional)
.expect("Bit-Vector capacity exceeded");
assert!(
new_len <= BitSlice::<O, T>::MAX_BITS,
"Bit-Vector capacity exceeded: {} > {}",
new_len,
BitSlice::<O, T>::MAX_BITS,
);
let bitspan = self.bitspan;
let head = bitspan.head();
let elts = bitspan.elements();
let new_elts = crate::mem::elts::<T>(head.value() as usize + new_len);
let extra = new_elts - elts;
self.with_vec(|vec| {
func(&mut **vec, extra);
// Initialize any newly-allocated elements to zero, without
// initializing leftover dead capacity.
vec.resize_with(new_elts, || unsafe { mem::zeroed() });
});
}
/// Permits manipulation of the underlying vector allocation.
///
/// The caller receives a mutable borrow of a `Vec<T>` with its destructor
/// disarmed. The caller may modify the buffer controls, including its
/// location and its capacity, and these changes will be committed back into
/// `self`. Modifications to the referent `[T]` handle, such as length
/// changes, will not be preserved.
fn with_vec<F, R>(&mut self, func: F) -> R
where F: FnOnce(&mut ManuallyDrop<Vec<T>>) -> R {
let capacity = self.capacity;
let (ptr, length) =
(self.bitspan.address().to_mut(), self.bitspan.elements());
let mut vec = unsafe { Vec::from_raw_parts(ptr, length, capacity) }
.pipe(ManuallyDrop::new);
let out = func(&mut vec);
unsafe {
self.bitspan.set_address(vec.as_mut_ptr());
}
self.capacity = vec.capacity();
out
}
}
mod api;
mod iter;
mod ops;
mod traits;
pub use self::iter::{
Drain,
IntoIter,
Splice,
};
#[cfg(test)]
mod tests;