1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// This file is part of Substrate.

// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Storage key type.

use crate::hash::{ReversibleStorageHasher, StorageHasher};
use codec::{Encode, EncodeLike, FullCodec, MaxEncodedLen};
use paste::paste;
use scale_info::StaticTypeInfo;
use sp_std::prelude::*;

/// A type used exclusively by storage maps as their key type.
///
/// The final key generated has the following form:
/// ```nocompile
/// Hasher1(encode(key1))
///     ++ Hasher2(encode(key2))
///     ++ ...
///     ++ HasherN(encode(keyN))
/// ```
pub struct Key<Hasher, KeyType>(core::marker::PhantomData<(Hasher, KeyType)>);

/// A trait that contains the current key as an associated type.
pub trait KeyGenerator {
	type Key: EncodeLike<Self::Key> + StaticTypeInfo;
	type KArg: Encode;
	type HashFn: FnOnce(&[u8]) -> Vec<u8>;
	type HArg;

	const HASHER_METADATA: &'static [crate::metadata::StorageHasher];

	/// Given a `key` tuple, calculate the final key by encoding each element individually and
	/// hashing them using the corresponding hasher in the `KeyGenerator`.
	fn final_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(key: KArg) -> Vec<u8>;
	/// Given a `key` tuple, migrate the keys from using the old hashers as given by `hash_fns`
	/// to using the newer hashers as specified by this `KeyGenerator`.
	fn migrate_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(
		key: &KArg,
		hash_fns: Self::HArg,
	) -> Vec<u8>;
}

/// The maximum length used by the key in storage.
pub trait KeyGeneratorMaxEncodedLen: KeyGenerator {
	fn key_max_encoded_len() -> usize;
}

/// A trait containing methods that are only implemented on the Key struct instead of the entire
/// tuple.
pub trait KeyGeneratorInner: KeyGenerator {
	type Hasher: StorageHasher;

	/// Hash a given `encoded` byte slice using the `KeyGenerator`'s associated `StorageHasher`.
	fn final_hash(encoded: &[u8]) -> Vec<u8>;
}

impl<H: StorageHasher, K: FullCodec + StaticTypeInfo> KeyGenerator for Key<H, K> {
	type Key = K;
	type KArg = (K,);
	type HashFn = Box<dyn FnOnce(&[u8]) -> Vec<u8>>;
	type HArg = (Self::HashFn,);

	const HASHER_METADATA: &'static [crate::metadata::StorageHasher] = &[H::METADATA];

	fn final_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(key: KArg) -> Vec<u8> {
		H::hash(&key.to_encoded_iter().next().expect("should have at least one element!"))
			.as_ref()
			.to_vec()
	}

	fn migrate_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(
		key: &KArg,
		hash_fns: Self::HArg,
	) -> Vec<u8> {
		(hash_fns.0)(&key.to_encoded_iter().next().expect("should have at least one element!"))
	}
}

impl<H: StorageHasher, K: FullCodec + MaxEncodedLen + StaticTypeInfo> KeyGeneratorMaxEncodedLen
	for Key<H, K>
{
	fn key_max_encoded_len() -> usize {
		H::max_len::<K>()
	}
}

impl<H: StorageHasher, K: FullCodec + StaticTypeInfo> KeyGeneratorInner for Key<H, K> {
	type Hasher = H;

	fn final_hash(encoded: &[u8]) -> Vec<u8> {
		H::hash(encoded).as_ref().to_vec()
	}
}

#[impl_trait_for_tuples::impl_for_tuples(1, 18)]
#[tuple_types_custom_trait_bound(KeyGeneratorInner)]
impl KeyGenerator for Tuple {
	for_tuples!( type Key = ( #(Tuple::Key),* ); );
	for_tuples!( type KArg = ( #(Tuple::Key),* ); );
	for_tuples!( type HArg = ( #(Tuple::HashFn),* ); );
	type HashFn = Box<dyn FnOnce(&[u8]) -> Vec<u8>>;

	const HASHER_METADATA: &'static [crate::metadata::StorageHasher] =
		&[for_tuples!( #(Tuple::Hasher::METADATA),* )];

	fn final_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(key: KArg) -> Vec<u8> {
		let mut final_key = Vec::new();
		let mut iter = key.to_encoded_iter();
		for_tuples!(
			#(
				let next_encoded = iter.next().expect("KArg number should be equal to Key number");
				final_key.extend_from_slice(&Tuple::final_hash(&next_encoded));
			)*
		);
		final_key
	}

	fn migrate_key<KArg: EncodeLikeTuple<Self::KArg> + TupleToEncodedIter>(
		key: &KArg,
		hash_fns: Self::HArg,
	) -> Vec<u8> {
		let mut migrated_key = Vec::new();
		let mut iter = key.to_encoded_iter();
		for_tuples!(
			#(
				let next_encoded = iter.next().expect("KArg number should be equal to Key number");
				migrated_key.extend_from_slice(&(hash_fns.Tuple)(&next_encoded));
			)*
		);
		migrated_key
	}
}

#[impl_trait_for_tuples::impl_for_tuples(1, 18)]
#[tuple_types_custom_trait_bound(KeyGeneratorInner + KeyGeneratorMaxEncodedLen)]
impl KeyGeneratorMaxEncodedLen for Tuple {
	fn key_max_encoded_len() -> usize {
		let mut len = 0usize;
		for_tuples!(
			#(
				len = len.saturating_add(Tuple::key_max_encoded_len());
			)*
		);
		len
	}
}

/// Marker trait to indicate that each element in the tuple encodes like the corresponding element
/// in another tuple.
///
/// This trait is sealed.
pub trait EncodeLikeTuple<T>: crate::storage::private::Sealed {}

macro_rules! impl_encode_like_tuples {
	($($elem:ident),+) => {
		paste! {
			impl<$($elem: Encode,)+ $([<$elem $elem>]: Encode + EncodeLike<$elem>,)+>
				EncodeLikeTuple<($($elem,)+)> for
				($([<$elem $elem>],)+) {}
			impl<$($elem: Encode,)+ $([<$elem $elem>]: Encode + EncodeLike<$elem>,)+>
				EncodeLikeTuple<($($elem,)+)> for
				&($([<$elem $elem>],)+) {}
		}
	};
}

impl_encode_like_tuples!(A);
impl_encode_like_tuples!(A, B);
impl_encode_like_tuples!(A, B, C);
impl_encode_like_tuples!(A, B, C, D);
impl_encode_like_tuples!(A, B, C, D, E);
impl_encode_like_tuples!(A, B, C, D, E, F);
impl_encode_like_tuples!(A, B, C, D, E, F, G);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L, M);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L, M, O);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P, Q);
impl_encode_like_tuples!(A, B, C, D, E, F, G, H, I, J, K, L, M, O, P, Q, R);

/// Trait to indicate that a tuple can be converted into an iterator of a vector of encoded bytes.
pub trait TupleToEncodedIter {
	fn to_encoded_iter(&self) -> sp_std::vec::IntoIter<Vec<u8>>;
}

#[impl_trait_for_tuples::impl_for_tuples(1, 18)]
#[tuple_types_custom_trait_bound(Encode)]
impl TupleToEncodedIter for Tuple {
	fn to_encoded_iter(&self) -> sp_std::vec::IntoIter<Vec<u8>> {
		[for_tuples!( #(self.Tuple.encode()),* )].to_vec().into_iter()
	}
}

impl<T: TupleToEncodedIter> TupleToEncodedIter for &T {
	fn to_encoded_iter(&self) -> sp_std::vec::IntoIter<Vec<u8>> {
		(*self).to_encoded_iter()
	}
}

/// A trait that indicates the hashers for the keys generated are all reversible.
pub trait ReversibleKeyGenerator: KeyGenerator {
	type ReversibleHasher;
	fn decode_final_key(key_material: &[u8]) -> Result<(Self::Key, &[u8]), codec::Error>;
}

impl<H: ReversibleStorageHasher, K: FullCodec + StaticTypeInfo> ReversibleKeyGenerator
	for Key<H, K>
{
	type ReversibleHasher = H;

	fn decode_final_key(key_material: &[u8]) -> Result<(Self::Key, &[u8]), codec::Error> {
		let mut current_key_material = Self::ReversibleHasher::reverse(key_material);
		let key = K::decode(&mut current_key_material)?;
		Ok((key, current_key_material))
	}
}

#[impl_trait_for_tuples::impl_for_tuples(2, 18)]
#[tuple_types_custom_trait_bound(ReversibleKeyGenerator + KeyGeneratorInner)]
impl ReversibleKeyGenerator for Tuple {
	for_tuples!( type ReversibleHasher = ( #(Tuple::ReversibleHasher),* ); );

	fn decode_final_key(key_material: &[u8]) -> Result<(Self::Key, &[u8]), codec::Error> {
		let mut current_key_material = key_material;
		Ok((
			(for_tuples! {
				#({
					let (key, material) = Tuple::decode_final_key(current_key_material)?;
					current_key_material = material;
					key
				}),*
			}),
			current_key_material,
		))
	}
}

/// Trait indicating whether a KeyGenerator has the prefix P.
pub trait HasKeyPrefix<P>: KeyGenerator {
	type Suffix;

	fn partial_key(prefix: P) -> Vec<u8>;
}

/// Trait indicating whether a ReversibleKeyGenerator has the prefix P.
pub trait HasReversibleKeyPrefix<P>: ReversibleKeyGenerator + HasKeyPrefix<P> {
	fn decode_partial_key(key_material: &[u8]) -> Result<Self::Suffix, codec::Error>;
}

frame_support_procedural::impl_key_prefix_for_tuples!();