logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! Generic implementation of Hash-based Message Authentication Code (HMAC).
//!
//! To use it you'll need a cryptographic hash function implementation from
//! RustCrypto project. You can either import specific crate (e.g. `sha2`), or
//! meta-crate `crypto-hashes` which reexport all related crates.
//!
//! # Usage
//! Let us demonstrate how to use HMAC using SHA256 as an example.
//!
//! To get the authentication code:
//!
//! ```rust
//! use sha2::Sha256;
//! use hmac::{Hmac, Mac, NewMac};
//!
//! // Create alias for HMAC-SHA256
//! type HmacSha256 = Hmac<Sha256>;
//!
//! // Create HMAC-SHA256 instance which implements `Mac` trait
//! let mut mac = HmacSha256::new_from_slice(b"my secret and secure key")
//!     .expect("HMAC can take key of any size");
//! mac.update(b"input message");
//!
//! // `result` has type `Output` which is a thin wrapper around array of
//! // bytes for providing constant time equality check
//! let result = mac.finalize();
//! // To get underlying array use `into_bytes` method, but be careful, since
//! // incorrect use of the code value may permit timing attacks which defeat
//! // the security provided by the `Output`
//! let code_bytes = result.into_bytes();
//! ```
//!
//! To verify the message:
//!
//! ```rust
//! # use sha2::Sha256;
//! # use hmac::{Hmac, Mac, NewMac};
//! # type HmacSha256 = Hmac<Sha256>;
//! let mut mac = HmacSha256::new_from_slice(b"my secret and secure key")
//!     .expect("HMAC can take key of any size");
//!
//! mac.update(b"input message");
//!
//! # let code_bytes = mac.clone().finalize().into_bytes();
//! // `verify` will return `Ok(())` if code is correct, `Err(MacError)` otherwise
//! mac.verify(&code_bytes).unwrap();
//! ```
//!
//! # Block and input sizes
//! Usually it is assumed that block size is larger than output size, due to the
//! generic nature of the implementation this edge case must be handled as well
//! to remove potential panic scenario. This is done by truncating hash output
//! to the hash block size if needed.

#![no_std]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms)]

#[cfg(feature = "std")]
extern crate std;

pub use crypto_mac::{self, Mac, NewMac};
pub use digest;

use core::{cmp::min, fmt};
use crypto_mac::{
    generic_array::{sequence::GenericSequence, ArrayLength, GenericArray},
    InvalidKeyLength, Output,
};
use digest::{BlockInput, FixedOutput, Reset, Update};

const IPAD: u8 = 0x36;
const OPAD: u8 = 0x5C;

/// The `Hmac` struct represents an HMAC using a given hash function `D`.
pub struct Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone,
    D::BlockSize: ArrayLength<u8>,
{
    digest: D,
    i_key_pad: GenericArray<u8, D::BlockSize>,
    opad_digest: D,
}

impl<D> Clone for Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone,
    D::BlockSize: ArrayLength<u8>,
{
    fn clone(&self) -> Hmac<D> {
        Hmac {
            digest: self.digest.clone(),
            i_key_pad: self.i_key_pad.clone(),
            opad_digest: self.opad_digest.clone(),
        }
    }
}

impl<D> fmt::Debug for Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone + fmt::Debug,
    D::BlockSize: ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Hmac")
            .field("digest", &self.digest)
            .field("i_key_pad", &self.i_key_pad)
            .field("opad_digest", &self.opad_digest)
            .finish()
    }
}

impl<D> NewMac for Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone,
    D::BlockSize: ArrayLength<u8>,
    D::OutputSize: ArrayLength<u8>,
{
    type KeySize = D::BlockSize;

    fn new(key: &GenericArray<u8, Self::KeySize>) -> Self {
        Self::new_from_slice(key.as_slice()).unwrap()
    }

    #[inline]
    fn new_from_slice(key: &[u8]) -> Result<Self, InvalidKeyLength> {
        let mut hmac = Self {
            digest: Default::default(),
            i_key_pad: GenericArray::generate(|_| IPAD),
            opad_digest: Default::default(),
        };

        let mut opad = GenericArray::<u8, D::BlockSize>::generate(|_| OPAD);
        debug_assert!(hmac.i_key_pad.len() == opad.len());

        // The key that Hmac processes must be the same as the block size of the
        // underlying Digest. If the provided key is smaller than that, we just
        // pad it with zeros. If its larger, we hash it and then pad it with
        // zeros.
        if key.len() <= hmac.i_key_pad.len() {
            for (k_idx, k_itm) in key.iter().enumerate() {
                hmac.i_key_pad[k_idx] ^= *k_itm;
                opad[k_idx] ^= *k_itm;
            }
        } else {
            let mut digest = D::default();
            digest.update(key);
            let output = digest.finalize_fixed();
            // `n` is calculated at compile time and will equal
            // D::OutputSize. This is used to ensure panic-free code
            let n = min(output.len(), hmac.i_key_pad.len());
            for idx in 0..n {
                hmac.i_key_pad[idx] ^= output[idx];
                opad[idx] ^= output[idx];
            }
        }

        hmac.digest.update(&hmac.i_key_pad);
        hmac.opad_digest.update(&opad);

        Ok(hmac)
    }
}

impl<D> Mac for Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone,
    D::BlockSize: ArrayLength<u8>,
    D::OutputSize: ArrayLength<u8>,
{
    type OutputSize = D::OutputSize;

    #[inline]
    fn update(&mut self, data: &[u8]) {
        self.digest.update(data);
    }

    #[inline]
    fn finalize(self) -> Output<Self> {
        let mut opad_digest = self.opad_digest.clone();
        let hash = self.digest.finalize_fixed();
        opad_digest.update(&hash);
        Output::new(opad_digest.finalize_fixed())
    }

    #[inline]
    fn reset(&mut self) {
        self.digest.reset();
        self.digest.update(&self.i_key_pad);
    }
}

#[cfg(feature = "std")]
impl<D> std::io::Write for Hmac<D>
where
    D: Update + BlockInput + FixedOutput + Reset + Default + Clone,
    D::BlockSize: ArrayLength<u8>,
    D::OutputSize: ArrayLength<u8>,
{
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        Mac::update(self, buf);
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}