1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
/*!
  `linregress` provides an easy to use implementation of ordinary
  least squared linear regression with some basic statistics.
  See [`RegressionModel`] for details.

  The builder [`FormulaRegressionBuilder`] is used to construct a model from a
  table of data and an R-style formula or a list of columns to use.
  Currently only very simple formulae are supported,
  see [`FormulaRegressionBuilder.formula`] for details.

  # Example

  ```
  use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};

  # use linregress::Error;
  # fn main() -> Result<(), Error> {
  let y = vec![1., 2. ,3. , 4., 5.];
  let x1 = vec![5., 4., 3., 2., 1.];
  let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
  let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
  let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
  let data = RegressionDataBuilder::new().build_from(data)?;
  let formula = "Y ~ X1 + X2 + X3";
  let model = FormulaRegressionBuilder::new()
      .data(&data)
      .formula(formula)
      .fit()?;
  let parameters = model.parameters;
  let standard_errors = model.se;
  let pvalues = model.pvalues;
  assert_eq!(
      parameters.pairs(),
      vec![
          ("X1", -0.9999999999999745),
          ("X2", 0.00000000000000005637851296924623),
          ("X3", 0.00000000000000008283304597789254),
      ]
  );
  assert_eq!(
      standard_errors.pairs(),
      vec![
          ("X1", 0.00000000000019226371555402852),
          ("X2", 0.0000000000000008718958950659518),
          ("X3", 0.0000000000000005323837152041135),
      ]
  );
  assert_eq!(
      pvalues.pairs(),
      vec![
          ("X1", 0.00000000000012239888283055414),
          ("X2", 0.9588921357097694),
          ("X3", 0.9017368322742073),
      ]
  );
  # Ok(())
  # }
  ```

  [`RegressionModel`]: struct.RegressionModel.html
  [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
  [`FormulaRegressionBuilder.formula`]: struct.FormulaRegressionBuilder.html#method.formula
*/

#![warn(rust_2018_idioms)]
#![cfg_attr(feature = "unstable", feature(test))]
use std::borrow::Cow;
use std::collections::{BTreeSet, HashMap, HashSet};
use std::iter;

use nalgebra::{DMatrix, DVector, RowDVector};

pub use error::{Error, InconsistentSlopes};
use special_functions::stdtr;

mod error;
mod special_functions;

macro_rules! ensure {
    ($predicate:expr, $error:expr) => {
        if !$predicate {
            return Err($error);
        }
    };
}

/// A builder to create and fit a linear regression model.
///
/// Given a dataset and a set of columns to use this builder
/// will produce an ordinary least squared linear regression model.
///
/// See [`formula`] and [`data`] for details on how to configure this builder.
///
/// The pseudo inverse method is used to fit the model.
///
/// # Usage
///
/// ```
/// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
///
/// # use linregress::Error;
/// # fn main() -> Result<(), Error> {
/// let y = vec![1., 2. ,3., 4.];
/// let x = vec![4., 3., 2., 1.];
/// let data = vec![("Y", y), ("X", x)];
/// let data = RegressionDataBuilder::new().build_from(data)?;
/// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X").fit()?;
/// // Alternatively
/// let model = FormulaRegressionBuilder::new().data(&data).data_columns("Y", ["X"]).fit()?;
/// assert_eq!(model.parameters.intercept_value, 4.999999999999998);
/// assert_eq!(model.parameters.regressor_values[0], -0.9999999999999989);
/// assert_eq!(model.parameters.regressor_names[0], "X");
/// # Ok(())
/// # }
/// ```
///
/// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
/// [`data`]: struct.FormulaRegressionBuilder.html#method.data
#[derive(Debug, Clone)]
pub struct FormulaRegressionBuilder<'a> {
    data: Option<&'a RegressionData<'a>>,
    formula: Option<Cow<'a, str>>,
    columns: Option<(Cow<'a, str>, Vec<Cow<'a, str>>)>,
}

impl<'a> Default for FormulaRegressionBuilder<'a> {
    fn default() -> Self {
        FormulaRegressionBuilder::new()
    }
}

impl<'a> FormulaRegressionBuilder<'a> {
    /// Create as new FormulaRegressionBuilder with no data or formula set.
    pub fn new() -> Self {
        FormulaRegressionBuilder {
            data: None,
            formula: None,
            columns: None,
        }
    }

    /// Set the data to be used for the regression.
    ///
    /// The data has to be given as a reference to a [`RegressionData`] struct.
    /// See [`RegressionDataBuilder`] for details.
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn data(mut self, data: &'a RegressionData<'a>) -> Self {
        self.data = Some(data);
        self
    }

    /// Set the formula to use for the regression.
    ///
    /// The expected format is `<regressand> ~ <regressor 1> + <regressor 2>`.
    ///
    /// E.g. for a regressand named Y and three regressors named A, B and C
    /// the correct format would be `Y ~ A + B + C`.
    ///
    /// Note that there is currently no special support for categorical variables.
    /// So if you have a categorical variable with more than two distinct values
    /// or values that are not `0` and `1` you will need to perform "dummy coding" yourself.
    ///
    /// Alternatively you can use [`data_columns`][Self::data_columns].
    pub fn formula<T: Into<Cow<'a, str>>>(mut self, formula: T) -> Self {
        self.formula = Some(formula.into());
        self
    }

    /// Set the columns to be used as regressand and regressors for the regression.
    ///
    /// Note that there is currently no special support for categorical variables.
    /// So if you have a categorical variable with more than two distinct values
    /// or values that are not `0` and `1` you will need to perform "dummy coding" yourself.
    ///
    /// Alternatively you can use [`formula`][Self::formula].
    pub fn data_columns<I, S1, S2>(mut self, regressand: S1, regressors: I) -> Self
    where
        I: IntoIterator<Item = S2>,
        S1: Into<Cow<'a, str>>,
        S2: Into<Cow<'a, str>>,
    {
        let regressand = regressand.into();
        let regressors: Vec<_> = regressors.into_iter().map(|i| i.into()).collect();
        self.columns = Some((regressand, regressors));
        self
    }

    /// Fits the model and returns a [`RegressionModel`] if successful.
    /// You need to set the data with [`data`] and a formula with [`formula`]
    /// before you can use it.
    ///
    /// [`RegressionModel`]: struct.RegressionModel.html
    /// [`data`]: struct.FormulaRegressionBuilder.html#method.data
    /// [`formula`]: struct.FormulaRegressionBuilder.html#method.formula
    pub fn fit(self) -> Result<RegressionModel, Error> {
        let FittingData(input_vector, output_matrix, outputs) =
            Self::get_matrices_and_regressor_names(self)?;
        RegressionModel::try_from_matrices_and_regressor_names(input_vector, output_matrix, outputs)
    }

    /// Like [`fit`] but does not perfom any statistics on the resulting model.
    /// Returns a [`RegressionParameters`] struct containing the model parameters
    /// if successfull.
    ///
    /// This is usefull if you do not care about the statistics or the model and data
    /// you want to fit result in too few residual degrees of freedom to perform
    /// statistics.
    ///
    /// [`fit`]: struct.FormulaRegressionBuilder.html#method.fit
    /// [`RegressionParameters`]: struct.RegressionParameters.html
    pub fn fit_without_statistics(self) -> Result<RegressionParameters, Error> {
        let FittingData(input_vector, output_matrix, output_names) =
            Self::get_matrices_and_regressor_names(self)?;
        let low_level_result = fit_ols_pinv(input_vector, output_matrix)?;
        let parameters = low_level_result.params;
        let intercept = parameters[0];
        let slopes: Vec<_> = parameters.iter().cloned().skip(1).collect();
        ensure!(
            output_names.len() == slopes.len(),
            Error::InconsistentSlopes(InconsistentSlopes::new(output_names.len(), slopes.len()))
        );
        Ok(RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        })
    }

    fn get_matrices_and_regressor_names(self) -> Result<FittingData, Error> {
        let (input, outputs) = self.get_data_columns()?;
        let data = &self.data.ok_or(Error::NoData)?.data;
        let input_vector = data
            .get(input.as_ref())
            .ok_or_else(|| Error::ColumnNotInData(input.into()))?;
        let input_vector = RowDVector::from_vec(input_vector.to_vec());
        let mut output_matrix = Vec::new();
        // Add column of all ones as the first column of the matrix
        let all_ones_column = iter::repeat(1.).take(input_vector.len());
        output_matrix.extend(all_ones_column);
        // Add each input as a new column of the matrix
        for output in outputs.to_owned() {
            let output_vec = data
                .get(output.as_ref())
                .ok_or_else(|| Error::ColumnNotInData(output.to_string()))?;
            ensure!(
                output_vec.len() == input_vector.len(),
                Error::RegressorRegressandDimensionMismatch(output.to_string())
            );
            output_matrix.extend(output_vec.iter());
        }
        let output_matrix = DMatrix::from_vec(input_vector.len(), outputs.len() + 1, output_matrix);
        let outputs: Vec<_> = outputs.iter().map(|x| x.to_string()).collect();
        Ok(FittingData(input_vector, output_matrix, outputs))
    }

    fn get_data_columns(&self) -> Result<(Cow<'_, str>, Vec<Cow<'_, str>>), Error> {
        match (self.formula.as_ref(), self.columns.as_ref()) {
            (Some(..), Some(..)) => Err(Error::BothFormulaAndDataColumnsGiven),
            (Some(formula), None) => Self::parse_formula(formula),
            (None, Some((regressand, regressors))) => {
                ensure!(!regressors.is_empty(), Error::InvalidDataColumns);
                Ok((regressand.clone(), regressors.clone()))
            }
            (None, None) => Err(Error::NoFormula),
        }
    }

    fn parse_formula(formula: &str) -> Result<(Cow<'_, str>, Vec<Cow<'_, str>>), Error> {
        let split_formula: Vec<_> = formula.split('~').collect();
        ensure!(split_formula.len() == 2, Error::InvalidFormula);
        let input = split_formula[0].trim();
        let outputs: Vec<_> = split_formula[1]
            .split('+')
            .map(str::trim)
            .filter(|x| !x.is_empty())
            .map(|i| i.into())
            .collect();
        ensure!(!outputs.is_empty(), Error::InvalidFormula);
        Ok((input.into(), outputs))
    }
}

/// A simple tuple struct to reduce the type complxity of the
/// return type of get_matrices_and_regressor_names.
struct FittingData(RowDVector<f64>, DMatrix<f64>, Vec<String>);

/// A container struct for the regression data.
///
/// This struct is obtained using a [`RegressionDataBuilder`].
///
/// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
#[derive(Debug, Clone)]
pub struct RegressionData<'a> {
    data: HashMap<Cow<'a, str>, Vec<f64>>,
}

impl<'a> RegressionData<'a> {
    /// Constructs a new `RegressionData` struct from any collection that
    /// implements the `IntoIterator` trait.
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that can be converted to a `Cow<'a, str>`.
    ///
    /// `invalid_value_handling` specifies what to do if invalid data is encountered.
    fn new<I, S>(
        data: I,
        invalid_value_handling: InvalidValueHandling,
    ) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        let temp: HashMap<_, _> = data
            .into_iter()
            .map(|(key, value)| (key.into(), value))
            .collect();
        let first_key = temp.keys().next();
        ensure!(
            first_key.is_some(),
            Error::RegressionDataError("The data contains no columns.".into())
        );
        let first_key = first_key.unwrap();
        let first_len = temp[first_key].len();
        ensure!(
            first_len > 0,
            Error::RegressionDataError("The data contains an empty column.".into())
        );
        for key in temp.keys() {
            let this_len = temp[key].len();
            ensure!(
                this_len == first_len,
                Error::RegressionDataError(
                    "The lengths of the columns in the given data are inconsistent.".into()
                )
            );
            ensure!(
                !key.contains('~') && !key.contains('+'),
                Error::RegressionDataError(
                    "The column names may not contain `~` or `+`, because they are used \
                             as separators in the formula."
                        .into()
                )
            );
        }
        if Self::check_if_all_columns_are_equal(&temp) {
            return Err(Error::RegressionDataError(
                "All input columns contain only equal values. Fitting this model would lead \
                     to invalid statistics."
                    .into(),
            ));
        }
        if Self::check_if_data_is_valid(&temp) {
            return Ok(Self { data: temp });
        }
        match invalid_value_handling {
            InvalidValueHandling::ReturnError => Err(Error::RegressionDataError(
                "The data contains a non real value (NaN or infinity or negative infinity). \
                 If you would like to silently drop these values configure the builder with \
                 InvalidValueHandling::DropInvalid."
                    .into(),
            )),
            InvalidValueHandling::DropInvalid => {
                let temp = Self::drop_invalid_values(temp);
                let first_key = temp.keys().next().expect("Cleaned data has no columns.");
                let first_len = temp[first_key].len();
                ensure!(
                    first_len > 0,
                    Error::RegressionDataError("The cleaned data is empty.".into())
                );
                Ok(Self { data: temp })
            }
        }
    }

    fn check_if_all_columns_are_equal(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.is_empty() {
                return false;
            }
            let first_iter = iter::repeat(&column[0]).take(column.len());
            if !first_iter.eq(column.iter()) {
                return false;
            }
        }
        true
    }

    fn check_if_data_is_valid(data: &HashMap<Cow<'a, str>, Vec<f64>>) -> bool {
        for column in data.values() {
            if column.iter().any(|x| !x.is_finite()) {
                return false;
            }
        }
        true
    }

    fn drop_invalid_values(
        data: HashMap<Cow<'a, str>, Vec<f64>>,
    ) -> HashMap<Cow<'a, str>, Vec<f64>> {
        let mut invalid_rows: BTreeSet<usize> = BTreeSet::new();
        for column in data.values() {
            for (index, value) in column.iter().enumerate() {
                if !value.is_finite() {
                    invalid_rows.insert(index);
                }
            }
        }
        let mut cleaned_data = HashMap::new();
        for (key, mut column) in data {
            for index in invalid_rows.iter().rev() {
                column.remove(*index);
            }
            cleaned_data.insert(key, column);
        }
        cleaned_data
    }
}

/// A builder to create a RegressionData struct for use with a [`FormulaRegressionBuilder`].
///
/// [`FormulaRegressionBuilder`]: struct.FormulaRegressionBuilder.html
#[derive(Debug, Clone, Copy)]
pub struct RegressionDataBuilder {
    handle_invalid_values: InvalidValueHandling,
}

impl Default for RegressionDataBuilder {
    fn default() -> RegressionDataBuilder {
        RegressionDataBuilder {
            handle_invalid_values: InvalidValueHandling::default(),
        }
    }
}

impl RegressionDataBuilder {
    /// Create a new [`RegressionDataBuilder`].
    ///
    /// [`RegressionDataBuilder`]: struct.RegressionDataBuilder.html
    pub fn new() -> Self {
        Self::default()
    }

    /// Configure how to handle non real `f64` values (NaN or infinity or negative infinity) using
    /// a variant of the [`InvalidValueHandling`] enum.
    ///
    /// The default value is [`ReturnError`].
    ///
    /// # Example
    /// ```
    /// use linregress::{InvalidValueHandling, RegressionDataBuilder};
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let builder = RegressionDataBuilder::new();
    /// let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`InvalidValueHandling`]: enum.InvalidValueHandling.html
    /// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
    pub fn invalid_value_handling(mut self, setting: InvalidValueHandling) -> Self {
        self.handle_invalid_values = setting;
        self
    }

    /// Build a [`RegressionData`] struct from the given data.
    ///
    /// Any type that implements the [`IntoIterator`] trait can be used for the data.
    /// This could for example be a [`Hashmap`] or a [`Vec`].
    ///
    /// The iterator must consist of tupels of the form `(S, Vec<f64>)` where
    /// `S` is a type that implements `Into<Cow<str>>`, such as [`String`] or [`str`].
    ///
    /// You can think of this format as the representation of a table of data where
    /// each tuple `(S, Vec<f64>)` represents a column. The `S` is the header or label of the
    /// column and the `Vec<f64>` contains the data of the column.
    ///
    /// Because `~` and `+` are used as separators in the formula they may not be used in the name
    /// of a data column.
    ///
    /// # Example
    ///
    /// ```
    /// use std::collections::HashMap;
    /// use linregress::RegressionDataBuilder;
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let mut data1 = HashMap::new();
    /// data1.insert("Y", vec![1., 2., 3., 4.]);
    /// data1.insert("X", vec![4., 3., 2., 1.]);
    /// let regression_data1 = RegressionDataBuilder::new().build_from(data1)?;
    ///
    /// let y = vec![1., 2., 3., 4.];
    /// let x = vec![4., 3., 2., 1.];
    /// let data2 = vec![("X", x), ("Y", y)];
    /// let regression_data2 = RegressionDataBuilder::new().build_from(data2)?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`RegressionData`]: struct.RegressionData.html
    /// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
    /// [`Hashmap`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html
    /// [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
    /// [`String`]: https://doc.rust-lang.org/std/string/struct.String.html
    /// [`str`]: https://doc.rust-lang.org/std/primitive.str.html
    pub fn build_from<'a, I, S>(self, data: I) -> Result<RegressionData<'a>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        RegressionData::new(data, self.handle_invalid_values)
    }
}

/// How to proceed if given non real `f64` values (NaN or infinity or negative infinity).
///
/// Used with [`RegressionDataBuilder.invalid_value_handling`]
///
/// The default is [`ReturnError`].
///
/// [`RegressionDataBuilder.invalid_value_handling`]: struct.RegressionDataBuilder.html#method.invalid_value_handling
/// [`ReturnError`]: enum.InvalidValueHandling.html#variant.ReturnError
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum InvalidValueHandling {
    /// Return an error to the caller.
    ReturnError,
    /// Drop the columns containing the invalid values.
    DropInvalid,
}

impl Default for InvalidValueHandling {
    fn default() -> InvalidValueHandling {
        InvalidValueHandling::ReturnError
    }
}

/// A fitted regression model.
///
/// Is the result of [`FormulaRegressionBuilder.fit()`].
///
/// If a field has only one value for the model it is given as `f64`.
///
/// Otherwise it is given as a [`RegressionParameters`] struct.
///
///[`RegressionParameters`]: struct.RegressionParameters.html
///[`FormulaRegressionBuilder.fit()`]: struct.FormulaRegressionBuilder.html#method.fit
#[derive(Debug, Clone)]
pub struct RegressionModel {
    /// The model's intercept and slopes (also known as betas).
    pub parameters: RegressionParameters,
    /// The standard errors of the parameter estimates.
    pub se: RegressionParameters,
    /// Sum of squared residuals.
    pub ssr: f64,
    /// R-squared of the model.
    pub rsquared: f64,
    /// Adjusted R-squared of the model.
    pub rsquared_adj: f64,
    /// The two-tailed p-values for the t-statistics of the params.
    pub pvalues: RegressionParameters,
    /// The residuals of the model.
    pub residuals: RegressionParameters,
    ///  A scale factor for the covariance matrix.
    ///
    ///  Note that the square root of `scale` is often
    ///  called the standard error of the regression.
    pub scale: f64,
}

impl RegressionModel {
    /// Evaluates the model on given new input data and returns the predicted values.
    ///
    /// The new data is expected to have the same columns as the original data.
    /// See [`RegressionDataBuilder.build`] for details on the type of the `new_data` parameter.
    ///
    /// ## Note
    ///
    /// This function does *no* special handling of non real values (NaN or infinity or negative infinity).
    /// Such a value in `new_data` will result in a corresponding meaningless prediction.
    ///
    /// ## Example
    ///
    /// ```
    /// # use linregress::{RegressionDataBuilder, FormulaRegressionBuilder};
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let y = vec![1., 2., 3., 4., 5.];
    /// let x1 = vec![5., 4., 3., 2., 1.];
    /// let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
    /// let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
    /// let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
    /// let data = RegressionDataBuilder::new().build_from(data).unwrap();
    /// let formula = "Y ~ X1 + X2 + X3";
    /// let model = FormulaRegressionBuilder::new()
    ///     .data(&data)
    ///     .formula(formula)
    ///     .fit()?;
    /// let new_data = vec![
    ///     ("X1", vec![2.5, 3.5]),
    ///     ("X2", vec![2.0, 8.0]),
    ///     ("X3", vec![2.0, 1.0]),
    /// ];
    /// let prediction: Vec<f64> = model.predict(new_data)?;
    /// assert_eq!(prediction, vec![3.5000000000000275, 2.5000000000000533]);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`RegressionDataBuilder.build`]: struct.RegressionDataBuilder.html#method.build_from
    pub fn predict<'a, I, S>(&self, new_data: I) -> Result<Vec<f64>, Error>
    where
        I: IntoIterator<Item = (S, Vec<f64>)>,
        S: Into<Cow<'a, str>>,
    {
        let new_data: HashMap<Cow<'_, _>, Vec<f64>> = new_data
            .into_iter()
            .map(|(key, value)| (key.into(), value))
            .collect();
        self.check_variables(&new_data)?;
        let input_len = new_data.values().next().unwrap().len();
        let mut new_data_values: Vec<f64> = vec![];
        for key in &self.parameters.regressor_names {
            new_data_values.extend_from_slice(new_data[&Cow::from(key)].as_slice());
        }
        let new_data_matrix = DMatrix::from_vec(
            input_len,
            self.parameters.regressor_values.len(),
            new_data_values,
        );
        let param_matrix = DMatrix::from_iterator(
            self.parameters.regressor_values.len(),
            1,
            self.parameters.regressor_values.iter().copied(),
        );
        let intercept = self.parameters.intercept_value;
        let intercept_matrix =
            DMatrix::from_iterator(input_len, 1, std::iter::repeat(intercept).take(input_len));
        let predictions = (new_data_matrix * param_matrix) + intercept_matrix;
        let predictions: Vec<f64> = predictions.into_iter().copied().collect();
        Ok(predictions)
    }

    fn check_variables<'a>(
        &self,
        given_parameters: &HashMap<Cow<'a, str>, Vec<f64>>,
    ) -> Result<(), Error> {
        ensure!(!given_parameters.is_empty(), Error::NoData);
        let first_len = given_parameters.values().next().unwrap().len();
        ensure!(first_len > 0, Error::NoData);
        ensure!(
            self.parameters.regressor_names.len() == self.parameters.regressor_values.len(),
            Error::InconsistentRegressionModel
        );
        let model_parameters: HashSet<_> = self
            .parameters
            .regressor_names
            .iter()
            .map(Cow::from)
            .collect();
        for param in &model_parameters {
            if !given_parameters.contains_key(param) {
                return Err(Error::ColumnNotInData(param.to_string()));
            }
        }
        for (param, values) in given_parameters {
            ensure!(values.len() == first_len, Error::InconsistentVectors);
            if !model_parameters.contains(param) {
                return Err(Error::ModelColumnNotInData(param.to_string()));
            }
        }
        Ok(())
    }

    fn try_from_matrices_and_regressor_names<I: IntoIterator<Item = String>>(
        inputs: RowDVector<f64>,
        outputs: DMatrix<f64>,
        output_names: I,
    ) -> Result<Self, Error> {
        let low_level_result = fit_ols_pinv(inputs.to_owned(), outputs.to_owned())?;
        let LowLevelRegressionModel {
            parameters,
            se,
            ssr,
            rsquared,
            rsquared_adj,
            pvalues,
            residuals,
            scale,
        } = LowLevelRegressionModel::from_low_level_regression(low_level_result)?;
        let output_names: Vec<_> = output_names.into_iter().collect();
        let intercept = parameters[0];
        let slopes: Vec<f64> = parameters.into_iter().skip(1).collect();
        ensure!(
            output_names.len() == slopes.len(),
            Error::InconsistentSlopes(InconsistentSlopes::new(output_names.len(), slopes.len(),))
        );
        let parameters = RegressionParameters {
            intercept_value: intercept,
            regressor_values: slopes,
            regressor_names: output_names.to_vec(),
        };
        let se = RegressionParameters {
            intercept_value: se[0],
            regressor_values: se.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let residuals = RegressionParameters {
            intercept_value: residuals[0],
            regressor_values: residuals.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        let pvalues = RegressionParameters {
            intercept_value: pvalues[0],
            regressor_values: pvalues.iter().cloned().skip(1).collect(),
            regressor_names: output_names.to_vec(),
        };
        Ok(Self {
            parameters,
            se,
            ssr,
            rsquared,
            rsquared_adj,
            pvalues,
            residuals,
            scale,
        })
    }
}

/// A fitted regression model
///
/// Is the result of [`fit_low_level_regression_model`].
///
/// If a field has only one value for the model it is given as `f64`.
///
/// Otherwise it  is given as a `Vec<f64>` where the first value is the intercept value.
#[derive(Debug, Clone)]
pub struct LowLevelRegressionModel {
    /// The model's intercept and slopes (also known as betas).
    pub parameters: Vec<f64>,
    /// The standard errors of the parameter estimates.
    pub se: Vec<f64>,
    /// Sum of squared residuals.
    pub ssr: f64,
    /// R-squared of the model.
    pub rsquared: f64,
    /// Adjusted R-squared of the model.
    pub rsquared_adj: f64,
    /// The two-tailed p-values for the t-statistics of the params.
    pub pvalues: Vec<f64>,
    /// The residuals of the model.
    pub residuals: Vec<f64>,
    ///  A scale factor for the covariance matrix.
    ///
    ///  Note that the square root of `scale` is often
    ///  called the standard error of the regression.
    pub scale: f64,
}

impl LowLevelRegressionModel {
    fn from_low_level_regression(
        low_level_result: InternalLowLevelRegressionResult,
    ) -> Result<Self, Error> {
        let parameters = low_level_result.params;
        let singular_values = low_level_result.singular_values;
        let normalized_cov_params = low_level_result.normalized_cov_params;
        let diag = DMatrix::from_diagonal(&singular_values);
        let rank = &diag.rank(0.0);
        let input_vec: Vec<_> = low_level_result.inputs.iter().copied().collect();
        let input_matrix = DMatrix::from_vec(low_level_result.inputs.len(), 1, input_vec);
        let residuals = &input_matrix - (low_level_result.outputs * parameters.to_owned());
        let ssr = residuals.dot(&residuals);
        let n = low_level_result.inputs.ncols();
        let df_resid = n - rank;
        ensure!(
            df_resid >= 1,
            Error::ModelFittingError(
                "There are not enough residual degrees of freedom to perform statistics on this model".into()));
        let scale = residuals.dot(&residuals) / df_resid as f64;
        let cov_params = normalized_cov_params * scale;
        let se = get_se_from_cov_params(&cov_params)?;
        let centered_input_matrix = subtract_value_from_matrix(&input_matrix, input_matrix.mean());
        let centered_tss = &centered_input_matrix.dot(&centered_input_matrix);
        let rsquared = 1. - (ssr / centered_tss);
        let rsquared_adj = 1. - ((n - 1) as f64 / df_resid as f64 * (1. - rsquared));
        let tvalues: Vec<_> = parameters
            .iter()
            .zip(se.iter())
            .map(|(x, y)| x / y)
            .collect();
        let pvalues: Vec<_> = tvalues
            .iter()
            .cloned()
            .map(|x| stdtr(df_resid as i64, -(x.abs())) * 2.)
            .collect();
        // Convert these from interal Matrix types to user facing types
        let parameters: Vec<f64> = parameters.iter().copied().collect();
        let se: Vec<f64> = se.iter().copied().collect();
        let residuals: Vec<f64> = residuals.iter().copied().collect();
        Ok(Self {
            parameters,
            se,
            ssr,
            rsquared,
            rsquared_adj,
            pvalues,
            residuals,
            scale,
        })
    }
}

/// A parameter of a fitted [`RegressionModel`] given for the intercept and each regressor.
///
/// The values and names of the regressors are given in the same order.
///
/// You can obtain name value pairs using [`pairs`].
///
/// [`RegressionModel`]: struct.RegressionModel.html
/// [`pairs`]: struct.RegressionParameters.html#method.pairs
#[derive(Debug, Clone)]
pub struct RegressionParameters {
    pub intercept_value: f64,
    pub regressor_names: Vec<String>,
    pub regressor_values: Vec<f64>,
}

impl RegressionParameters {
    /// Returns the parameters as a Vec of tuples of the form `(name: &str, value: f64)`.
    ///
    /// # Usage
    ///
    /// ```
    /// use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
    ///
    /// # use linregress::Error;
    /// # fn main() -> Result<(), Error> {
    /// let y = vec![1.,2. ,3. , 4.];
    /// let x1 = vec![4., 3., 2., 1.];
    /// let x2 = vec![1., 2., 3., 4.];
    /// let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
    /// let data = RegressionDataBuilder::new().build_from(data)?;
    /// let model = FormulaRegressionBuilder::new().data(&data).formula("Y ~ X1 + X2").fit()?;
    /// let pairs = model.parameters.pairs();
    /// assert_eq!(pairs[0], ("X1", -0.0370370370370372));
    /// assert_eq!(pairs[1], ("X2", 0.9629629629629629));
    /// # Ok(())
    /// # }
    /// ```
    pub fn pairs(&self) -> Vec<(&str, f64)> {
        self.regressor_names
            .iter()
            .zip(self.regressor_values.iter())
            .map(|(x, y)| (x.as_str(), *y))
            .collect()
    }
}

/// Fit a regression model directly on a matrix of input data
///
/// Expects a matrix in the format
///
/// | regressand | intercept | regressor 1 | regressor 2 | …   |
/// |------------|-----------|-------------|-------------|-----|
/// | value      | 1.0       | value       | value       | …   |
/// | ⋮          | ⋮         | ⋮           | ⋮           | ⋮   |
///
/// in row major order.
///
/// # Note
/// - The matrix should already contain the `intercept` column consisting of only the value `1.0`.
/// - No validation of the data is performed, except for a simple dimension consistency check.
///
/// # Example
/// ```
/// # fn main() -> Result<(), linregress::Error> {
/// use linregress::fit_low_level_regression_model;
///
/// let data_row_major: Vec<f64> = vec![
///     1., 1.0, 1., 7.,
///     3., 1.0, 2., 6.,
///     4., 1.0, 3., 5.,
///     5., 1.0, 4., 4.,
///     2., 1.0, 5., 3.,
///     3., 1.0, 6., 2.,
///     4., 1.0, 7., 1.,
/// ];
/// let model = fit_low_level_regression_model(&data_row_major, 7, 4)?;
/// let params = [
///     0.09523809523809511f64,
///     0.5059523809523809,
///     0.25595238095238104,
/// ];
/// assert_eq!(model.parameters, params);
/// # Ok(())
/// # }
/// ```
pub fn fit_low_level_regression_model(
    data_row_major: &[f64],
    num_rows: usize,
    num_columns: usize,
) -> Result<LowLevelRegressionModel, Error> {
    let regression = get_low_level_regression(data_row_major, num_rows, num_columns)?;
    let model = LowLevelRegressionModel::from_low_level_regression(regression)?;
    Ok(model)
}

/// Like [`fit_low_level_regression_model`] but does not compute any statistics after
/// fitting the model.
///
/// Returns a `Vec<f64>` analogous to the `parameters` field of [`LowLevelRegressionModel`].
pub fn fit_low_level_regression_model_without_statistics(
    data_row_major: &[f64],
    num_rows: usize,
    num_columns: usize,
) -> Result<Vec<f64>, Error> {
    let regression = get_low_level_regression(data_row_major, num_rows, num_columns)?;
    Ok(regression.params.iter().copied().collect())
}

fn get_low_level_regression(
    data_row_major: &[f64],
    num_rows: usize,
    num_columns: usize,
) -> Result<InternalLowLevelRegressionResult, Error> {
    ensure!(
        !data_row_major.is_empty() && num_rows * num_columns == data_row_major.len(),
        Error::InconsistentVectors
    );
    let data = DMatrix::from_row_slice(num_rows, num_columns, data_row_major);
    let inputs = data.slice((0, 0), (num_rows, 1));
    let inputs: RowDVector<f64> = RowDVector::from_iterator(num_rows, inputs.iter().copied());
    let outputs: DMatrix<f64> = data.slice((0, 1), (num_rows, num_columns - 1)).into_owned();
    fit_ols_pinv(inputs, outputs)
}

/// Result of fitting a low level matrix based model
#[derive(Debug, Clone)]
struct InternalLowLevelRegressionResult {
    inputs: RowDVector<f64>,
    outputs: DMatrix<f64>,
    params: DMatrix<f64>,
    singular_values: DVector<f64>,
    normalized_cov_params: DMatrix<f64>,
}

/// Performs ordinary least squared linear regression using the pseudo inverse method.
///
/// Returns a tuple `LowLevelRegressionResult`
fn fit_ols_pinv(
    inputs: RowDVector<f64>,
    outputs: DMatrix<f64>,
) -> Result<InternalLowLevelRegressionResult, Error> {
    ensure!(
        !inputs.is_empty(),
        Error::ModelFittingError(
            "Fitting the model failed because the input vector is empty".into()
        )
    );
    ensure!(
        outputs.nrows() >= 1 && outputs.ncols() >= 1,
        Error::ModelFittingError(
            "Fitting the model failed because the output matrix is empty".into()
        )
    );
    let singular_values = outputs
        .to_owned()
        .try_svd(false, false, std::f64::EPSILON, 0)
        .ok_or_else(|| {
            Error::ModelFittingError(
                "computing the singular-value decomposition of the output matrix failed".into(),
            )
        })?
        .singular_values;
    let pinv = outputs.clone().pseudo_inverse(0.).map_err(|_| {
        Error::ModelFittingError("Taking the pinv of the output matrix failed".into())
    });
    let pinv = pinv?;
    let normalized_cov_params = &pinv * &pinv.transpose();
    let params = get_sum_of_products(&pinv, &inputs);
    ensure!(
        params.len() >= 2,
        Error::ModelFittingError("Invalid parameter matrix".into())
    );
    Ok(InternalLowLevelRegressionResult {
        inputs,
        outputs,
        params,
        singular_values,
        normalized_cov_params,
    })
}

/// Subtracts `value` from all fields in `matrix` and returns the resulting new matrix.
fn subtract_value_from_matrix(matrix: &DMatrix<f64>, value: f64) -> DMatrix<f64> {
    let nrows = matrix.nrows();
    let ncols = matrix.ncols();
    let substraction_matrix: DMatrix<f64> =
        DMatrix::from_iterator(nrows, ncols, std::iter::repeat(value).take(nrows * ncols));
    matrix - substraction_matrix
}

/// Calculates the standard errors given a model's covariate parameters
fn get_se_from_cov_params(matrix: &DMatrix<f64>) -> Result<DMatrix<f64>, Error> {
    let mut v = Vec::new();
    for row_index in 0..matrix.ncols() {
        let row = matrix.row(row_index);
        ensure!(
            row_index <= row.len(),
            Error::ModelFittingError("Matrix is not square".into())
        );
        v.push(row[row_index].sqrt());
    }
    Ok(DMatrix::from_vec(matrix.ncols(), 1, v))
}

fn get_sum_of_products(matrix: &DMatrix<f64>, vector: &RowDVector<f64>) -> DMatrix<f64> {
    let mut v: Vec<f64> = Vec::new();
    for row_index in 0..matrix.nrows() {
        let row = matrix.row(row_index);
        let mut sum = 0.;
        for (x, y) in row.iter().zip(vector.iter()) {
            sum += x * y;
        }
        v.push(sum);
    }
    DMatrix::from_vec(matrix.nrows(), 1, v)
}

#[cfg(test)]
mod tests {
    use super::*;
    fn assert_almost_equal(a: f64, b: f64) {
        assert_almost_equal_with_precision(a, b, 1.0E-14);
    }

    fn assert_almost_equal_with_precision(a: f64, b: f64, precision: f64) {
        if (a - b).abs() > precision {
            panic!("\n{:?} vs\n{:?}", a, b);
        }
    }

    fn assert_slices_almost_equal(a: &[f64], b: &[f64]) {
        assert_eq!(a.len(), b.len());
        for (x, y) in a.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>() {
            assert_almost_equal(x, y);
        }
    }

    #[test]
    fn test_pinv_with_formula_builder() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit()
            .expect("Fitting model failed");

        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        let se = vec![
            0.015457637291218289,
            0.1417242813072997,
            0.14172428130729975,
        ];
        let ssr = 9.107142857142858;
        let rsquared = 0.16118421052631582;
        let rsquared_adj = -0.006578947368421018;
        let scale = 1.8214285714285716;
        let pvalues = vec![
            0.001639031204417556,
            0.016044083709847945,
            0.13074580446389245,
        ];
        let residuals = vec![
            -1.392857142857142,
            0.3571428571428581,
            1.1071428571428577,
            1.8571428571428577,
            -1.3928571428571423,
            -0.6428571428571423,
            0.10714285714285765,
        ];
        assert_almost_equal(regression.parameters.intercept_value, model_parameters[0]);
        assert_almost_equal(
            regression.parameters.regressor_values[0],
            model_parameters[1],
        );
        assert_almost_equal(
            regression.parameters.regressor_values[1],
            model_parameters[2],
        );
        assert_almost_equal(regression.se.intercept_value, se[0]);
        assert_slices_almost_equal(&regression.se.regressor_values, &se[1..]);
        assert_almost_equal(regression.ssr, ssr);
        assert_almost_equal(regression.rsquared, rsquared);
        assert_almost_equal(regression.rsquared_adj, rsquared_adj);
        assert_almost_equal(regression.pvalues.intercept_value, pvalues[0]);
        assert_slices_almost_equal(&regression.pvalues.regressor_values, &pvalues[1..]);
        assert_almost_equal(regression.residuals.intercept_value, residuals[0]);
        assert_slices_almost_equal(&regression.residuals.regressor_values, &residuals[1..]);
        assert_eq!(regression.scale, scale);
    }

    #[test]
    fn test_pinv_with_data_columns() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .data_columns("Y", ["X1", "X2"])
            .fit()
            .expect("Fitting model failed");

        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        let se = vec![
            0.015457637291218289,
            0.1417242813072997,
            0.14172428130729975,
        ];
        let ssr = 9.107142857142858;
        let rsquared = 0.16118421052631582;
        let rsquared_adj = -0.006578947368421018;
        let scale = 1.8214285714285716;
        let pvalues = vec![
            0.001639031204417556,
            0.016044083709847945,
            0.13074580446389245,
        ];
        let residuals = vec![
            -1.392857142857142,
            0.3571428571428581,
            1.1071428571428577,
            1.8571428571428577,
            -1.3928571428571423,
            -0.6428571428571423,
            0.10714285714285765,
        ];
        assert_almost_equal(regression.parameters.intercept_value, model_parameters[0]);
        assert_almost_equal(
            regression.parameters.regressor_values[0],
            model_parameters[1],
        );
        assert_almost_equal(
            regression.parameters.regressor_values[1],
            model_parameters[2],
        );
        assert_almost_equal(regression.se.intercept_value, se[0]);
        assert_slices_almost_equal(&regression.se.regressor_values, &se[1..]);
        assert_almost_equal(regression.ssr, ssr);
        assert_almost_equal(regression.rsquared, rsquared);
        assert_almost_equal(regression.rsquared_adj, rsquared_adj);
        assert_almost_equal(regression.pvalues.intercept_value, pvalues[0]);
        assert_slices_almost_equal(&regression.pvalues.regressor_values, &pvalues[1..]);
        assert_almost_equal(regression.residuals.intercept_value, residuals[0]);
        assert_slices_almost_equal(&regression.residuals.regressor_values, &residuals[1..]);
        assert_eq!(regression.scale, scale);
    }

    #[test]
    fn test_low_level_model_fitting() {
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data_row_major = Vec::with_capacity(4 * 7);
        for n in 0..7 {
            data_row_major.push(inputs[n]);
            data_row_major.push(1.0);
            data_row_major.push(outputs1[n]);
            data_row_major.push(outputs2[n]);
        }
        let regression = fit_low_level_regression_model(&data_row_major, 7, 4).unwrap();
        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        let se = vec![
            0.015457637291218289,
            0.1417242813072997,
            0.14172428130729975,
        ];
        let ssr = 9.107142857142858;
        let rsquared = 0.16118421052631582;
        let rsquared_adj = -0.006578947368421018;
        let scale = 1.8214285714285716;
        let pvalues = vec![
            0.001639031204417556,
            0.016044083709847945,
            0.13074580446389245,
        ];
        let residuals = vec![
            -1.392857142857142,
            0.3571428571428581,
            1.1071428571428577,
            1.8571428571428577,
            -1.3928571428571423,
            -0.6428571428571423,
            0.10714285714285765,
        ];
        assert_slices_almost_equal(&regression.parameters, &model_parameters);
        assert_slices_almost_equal(&regression.se, &se);
        assert_almost_equal(regression.ssr, ssr);
        assert_almost_equal(regression.rsquared, rsquared);
        assert_almost_equal(regression.rsquared_adj, rsquared_adj);
        assert_slices_almost_equal(&regression.pvalues, &pvalues);
        assert_slices_almost_equal(&regression.residuals, &residuals);
        assert_eq!(regression.scale, scale);
    }

    #[test]
    fn test_without_statistics() {
        use std::collections::HashMap;
        let inputs = vec![1., 3., 4., 5., 2., 3., 4.];
        let outputs1 = vec![1., 2., 3., 4., 5., 6., 7.];
        let outputs2 = vec![7., 6., 5., 4., 3., 2., 1.];
        let mut data = HashMap::new();
        data.insert("Y", inputs);
        data.insert("X1", outputs1);
        data.insert("X2", outputs2);
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let regression = FormulaRegressionBuilder::new()
            .data(&data)
            .formula("Y ~ X1 + X2")
            .fit_without_statistics()
            .expect("Fitting model failed");
        let model_parameters = vec![0.09523809523809523, 0.5059523809523809, 0.2559523809523808];
        assert_almost_equal(regression.intercept_value, model_parameters[0]);
        assert_almost_equal(regression.regressor_values[0], model_parameters[1]);
        assert_almost_equal(regression.regressor_values[1], model_parameters[2]);
    }

    #[test]
    fn test_invalid_input_empty_matrix() {
        let y = vec![];
        let x1 = vec![];
        let x2 = vec![];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_wrong_shape_x() {
        let y = vec![1., 2., 3.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_wrong_shape_y() {
        let y = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3.];
        let x2 = vec![1., 2., 3.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_invalid_input_nan() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::NAN];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NAN];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }

    #[test]
    fn test_invalid_input_infinity() {
        let y1 = vec![1., 2., 3., 4.];
        let x1 = vec![1., 2., 3., std::f64::INFINITY];
        let data1 = vec![("Y", y1), ("X", x1)];
        let y2 = vec![1., 2., 3., std::f64::NEG_INFINITY];
        let x2 = vec![1., 2., 3., 4.];
        let data2 = vec![("Y", y2), ("X", x2)];
        let r_data1 = RegressionDataBuilder::new().build_from(data1.to_owned());
        let r_data2 = RegressionDataBuilder::new().build_from(data2.to_owned());
        assert!(r_data1.is_err());
        assert!(r_data2.is_err());
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data1 = builder.build_from(data1);
        let r_data2 = builder.build_from(data2);
        assert!(r_data1.is_ok());
        assert!(r_data2.is_ok());
    }

    #[test]
    fn test_invalid_input_all_equal_columns() {
        let y = vec![38.0, 38.0, 38.0];
        let x = vec![42.0, 42.0, 42.0];
        let data = vec![("y", y), ("x", x)];
        let data = RegressionDataBuilder::new().build_from(data);
        assert!(data.is_err());
    }

    #[test]
    fn test_drop_invalid_values() {
        let mut data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        data.insert("Y".into(), vec![-1., -2., -3., -4.]);
        data.insert("foo".into(), vec![1., 2., 12., 4.]);
        data.insert("bar".into(), vec![1., 1., 7., 4.]);
        data.insert("baz".into(), vec![1.3333, 2.754, 3.12, 4.11]);
        assert_eq!(RegressionData::drop_invalid_values(data.to_owned()), data);
        data.insert(
            "invalid".into(),
            vec![std::f64::NAN, 42., std::f64::NEG_INFINITY, 23.11],
        );
        data.insert(
            "invalid2".into(),
            vec![1.337, -3.14, std::f64::INFINITY, 11.111111],
        );
        let mut ref_data: HashMap<Cow<'_, str>, Vec<f64>> = HashMap::new();
        ref_data.insert("Y".into(), vec![-2., -4.]);
        ref_data.insert("foo".into(), vec![2., 4.]);
        ref_data.insert("bar".into(), vec![1., 4.]);
        ref_data.insert("baz".into(), vec![2.754, 4.11]);
        ref_data.insert("invalid".into(), vec![42., 23.11]);
        ref_data.insert("invalid2".into(), vec![-3.14, 11.111111]);
        assert_eq!(
            ref_data,
            RegressionData::drop_invalid_values(data.to_owned())
        );
    }

    #[test]
    fn test_all_invalid_input() {
        let data = vec![
            ("Y", vec![1., 2., 3.]),
            ("X", vec![std::f64::NAN, std::f64::NAN, std::f64::NAN]),
        ];
        let builder = RegressionDataBuilder::new();
        let builder = builder.invalid_value_handling(InvalidValueHandling::DropInvalid);
        let r_data = builder.build_from(data);
        assert!(r_data.is_err());
    }

    #[test]
    fn test_invalid_column_names() {
        let data1 = vec![("x~f", vec![1., 2., 3.]), ("foo", vec![0., 0., 0.])];
        let data2 = vec![("foo", vec![1., 2., 3.]), ("foo+", vec![0., 0., 0.])];
        let builder = RegressionDataBuilder::new();
        assert!(builder.build_from(data1).is_err());
        assert!(builder.build_from(data2).is_err());
    }

    #[test]
    fn test_no_formula() {
        let data = vec![("x", vec![1., 2., 3.]), ("foo", vec![0., 0., 0.])];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let res = FormulaRegressionBuilder::new().data(&data).fit();
        assert!(res.is_err());
    }

    #[test]
    fn test_both_formula_and_data_columns() {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        let res = FormulaRegressionBuilder::new()
            .data(&data)
            .formula(formula)
            .data_columns("Y", ["X1", "X2", "X3"])
            .fit();
        assert!(res.is_err());
    }

    fn build_model() -> RegressionModel {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        FormulaRegressionBuilder::new()
            .data(&data)
            .formula(formula)
            .fit()
            .unwrap()
    }

    #[test]
    fn test_prediction_empty_vectors() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![("X1", vec![]), ("X2", vec![]), ("X3", vec![])]
            .into_iter()
            .map(|(x, y)| (Cow::from(x), y))
            .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction_vectors_with_different_lengths() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![
            ("X1", vec![1.0, 2.0]),
            ("X2", vec![2.0, 1.0]),
            ("X3", vec![3.0]),
        ]
        .into_iter()
        .map(|(x, y)| (Cow::from(x), y))
        .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_too_many_prediction_variables() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![
            ("X1", vec![1.0]),
            ("X2", vec![2.0]),
            ("X3", vec![3.0]),
            ("X4", vec![4.0]),
        ]
        .into_iter()
        .map(|(x, y)| (Cow::from(x), y))
        .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_not_enough_prediction_variables() {
        let model = build_model();
        let new_data: HashMap<Cow<'_, _>, _> = vec![("X1", vec![1.0]), ("X2", vec![2.0])]
            .into_iter()
            .map(|(x, y)| (Cow::from(x), y))
            .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction_broken_model() {
        let mut model = build_model();
        model.parameters.regressor_values = vec![];
        let new_data: HashMap<Cow<'_, _>, _> =
            vec![("X1", vec![1.0]), ("X2", vec![2.0]), ("X3", vec![3.0])]
                .into_iter()
                .map(|(x, y)| (Cow::from(x), y))
                .collect();
        assert!(model.check_variables(&new_data).is_err());
    }

    #[test]
    fn test_prediction() {
        let model = build_model();
        let new_data = vec![("X1", vec![2.5]), ("X2", vec![2.0]), ("X3", vec![2.0])];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 1);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
    }

    #[test]
    fn test_multiple_predictions() {
        let model = build_model();
        let new_data = vec![
            ("X1", vec![2.5, 3.5]),
            ("X2", vec![2.0, 8.0]),
            ("X3", vec![2.0, 1.0]),
        ];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 2);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
        assert_almost_equal_with_precision(prediction[1], 2.5000000000001337, 1.0E-7);
    }

    #[test]
    fn test_multiple_predictions_out_of_order() {
        let model = build_model();
        let new_data = vec![
            ("X1", vec![2.5, 3.5]),
            ("X3", vec![2.0, 1.0]),
            ("X2", vec![2.0, 8.0]),
        ];
        let prediction = model.predict(new_data).unwrap();
        assert_eq!(prediction.len(), 2);
        assert_almost_equal_with_precision(prediction[0], 3.500000000000111, 1.0E-7);
        assert_almost_equal_with_precision(prediction[1], 2.5000000000001337, 1.0E-7);
    }
}

#[cfg(all(feature = "unstable", test))]
mod bench {
    use super::*;
    extern crate test;
    use test::Bencher;

    #[bench]
    fn bench_with_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit()
        });
    }

    #[bench]
    fn bench_data_columns_with_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .data_columns("Y", ["X1", "X2", "X3"])
                .fit()
        });
    }

    #[bench]
    fn bench_without_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        let formula = "Y ~ X1 + X2 + X3";
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .formula(formula)
                .fit_without_statistics()
        });
    }

    #[bench]
    fn bench_data_columns_without_stats(b: &mut Bencher) {
        let y = vec![1., 2., 3., 4., 5.];
        let x1 = vec![5., 4., 3., 2., 1.];
        let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
        let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
        let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
        let data = RegressionDataBuilder::new().build_from(data).unwrap();
        b.iter(|| {
            FormulaRegressionBuilder::new()
                .data(&data)
                .data_columns("Y", ["X1", "X2", "X3"])
                .fit_without_statistics()
        });
    }
}