1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use crate::{Distribution, OpenClosed01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
location: F,
scale: F,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
LocationNotFinite,
ScaleNotPositive,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleNotPositive => "scale is not positive and finite in Gumbel distribution",
Error::LocationNotFinite => "location is not finite in Gumbel distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
impl<F> Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
pub fn new(location: F, scale: F) -> Result<Gumbel<F>, Error> {
if scale <= F::zero() || scale.is_infinite() || scale.is_nan() {
return Err(Error::ScaleNotPositive);
}
if location.is_infinite() || location.is_nan() {
return Err(Error::LocationNotFinite);
}
Ok(Gumbel { location, scale })
}
}
impl<F> Distribution<F> for Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let x: F = rng.sample(OpenClosed01);
self.location - self.scale * (-x.ln()).ln()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn test_zero_scale() {
Gumbel::new(0.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_scale() {
Gumbel::new(0.0, core::f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_nan_scale() {
Gumbel::new(0.0, core::f64::NAN).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_location() {
Gumbel::new(core::f64::INFINITY, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_nan_location() {
Gumbel::new(core::f64::NAN, 1.0).unwrap();
}
#[test]
fn test_sample_against_cdf() {
fn neg_log_log(x: f64) -> f64 {
-(-x.ln()).ln()
}
let location = 0.0;
let scale = 1.0;
let iterations = 100_000;
let increment = 1.0 / iterations as f64;
let probabilities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
let mut quantiles = [0.0; 9];
for (i, p) in probabilities.iter().enumerate() {
quantiles[i] = neg_log_log(*p);
}
let mut proportions = [0.0; 9];
let d = Gumbel::new(location, scale).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..iterations {
let replicate = d.sample(&mut rng);
for (i, q) in quantiles.iter().enumerate() {
if replicate < *q {
proportions[i] += increment;
}
}
}
assert!(proportions
.iter()
.zip(&probabilities)
.all(|(p_hat, p)| (p_hat - p).abs() < 0.003))
}
}