1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
use std::char;
use std::cmp;
use std::fmt::Debug;
use std::slice;
use std::u8;

use crate::unicode;

// This module contains an *internal* implementation of interval sets.
//
// The primary invariant that interval sets guards is canonical ordering. That
// is, every interval set contains an ordered sequence of intervals where
// no two intervals are overlapping or adjacent. While this invariant is
// occasionally broken within the implementation, it should be impossible for
// callers to observe it.
//
// Since case folding (as implemented below) breaks that invariant, we roll
// that into this API even though it is a little out of place in an otherwise
// generic interval set. (Hence the reason why the `unicode` module is imported
// here.)
//
// Some of the implementation complexity here is a result of me wanting to
// preserve the sequential representation without using additional memory.
// In many cases, we do use linear extra memory, but it is at most 2x and it
// is amortized. If we relaxed the memory requirements, this implementation
// could become much simpler. The extra memory is honestly probably OK, but
// character classes (especially of the Unicode variety) can become quite
// large, and it would be nice to keep regex compilation snappy even in debug
// builds. (In the past, I have been careless with this area of code and it has
// caused slow regex compilations in debug mode, so this isn't entirely
// unwarranted.)
//
// Tests on this are relegated to the public API of HIR in src/hir.rs.

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct IntervalSet<I> {
    ranges: Vec<I>,
}

impl<I: Interval> IntervalSet<I> {
    /// Create a new set from a sequence of intervals. Each interval is
    /// specified as a pair of bounds, where both bounds are inclusive.
    ///
    /// The given ranges do not need to be in any specific order, and ranges
    /// may overlap.
    pub fn new<T: IntoIterator<Item = I>>(intervals: T) -> IntervalSet<I> {
        let mut set = IntervalSet { ranges: intervals.into_iter().collect() };
        set.canonicalize();
        set
    }

    /// Add a new interval to this set.
    pub fn push(&mut self, interval: I) {
        // TODO: This could be faster. e.g., Push the interval such that
        // it preserves canonicalization.
        self.ranges.push(interval);
        self.canonicalize();
    }

    /// Return an iterator over all intervals in this set.
    ///
    /// The iterator yields intervals in ascending order.
    pub fn iter(&self) -> IntervalSetIter<'_, I> {
        IntervalSetIter(self.ranges.iter())
    }

    /// Return an immutable slice of intervals in this set.
    ///
    /// The sequence returned is in canonical ordering.
    pub fn intervals(&self) -> &[I] {
        &self.ranges
    }

    /// Expand this interval set such that it contains all case folded
    /// characters. For example, if this class consists of the range `a-z`,
    /// then applying case folding will result in the class containing both the
    /// ranges `a-z` and `A-Z`.
    ///
    /// This returns an error if the necessary case mapping data is not
    /// available.
    pub fn case_fold_simple(&mut self) -> Result<(), unicode::CaseFoldError> {
        let len = self.ranges.len();
        for i in 0..len {
            let range = self.ranges[i];
            if let Err(err) = range.case_fold_simple(&mut self.ranges) {
                self.canonicalize();
                return Err(err);
            }
        }
        self.canonicalize();
        Ok(())
    }

    /// Union this set with the given set, in place.
    pub fn union(&mut self, other: &IntervalSet<I>) {
        // This could almost certainly be done more efficiently.
        self.ranges.extend(&other.ranges);
        self.canonicalize();
    }

    /// Intersect this set with the given set, in place.
    pub fn intersect(&mut self, other: &IntervalSet<I>) {
        if self.ranges.is_empty() {
            return;
        }
        if other.ranges.is_empty() {
            self.ranges.clear();
            return;
        }

        // There should be a way to do this in-place with constant memory,
        // but I couldn't figure out a simple way to do it. So just append
        // the intersection to the end of this range, and then drain it before
        // we're done.
        let drain_end = self.ranges.len();

        let mut ita = (0..drain_end).into_iter();
        let mut itb = (0..other.ranges.len()).into_iter();
        let mut a = ita.next().unwrap();
        let mut b = itb.next().unwrap();
        loop {
            if let Some(ab) = self.ranges[a].intersect(&other.ranges[b]) {
                self.ranges.push(ab);
            }
            let (it, aorb) =
                if self.ranges[a].upper() < other.ranges[b].upper() {
                    (&mut ita, &mut a)
                } else {
                    (&mut itb, &mut b)
                };
            match it.next() {
                Some(v) => *aorb = v,
                None => break,
            }
        }
        self.ranges.drain(..drain_end);
    }

    /// Subtract the given set from this set, in place.
    pub fn difference(&mut self, other: &IntervalSet<I>) {
        if self.ranges.is_empty() || other.ranges.is_empty() {
            return;
        }

        // This algorithm is (to me) surprisingly complex. A search of the
        // interwebs indicate that this is a potentially interesting problem.
        // Folks seem to suggest interval or segment trees, but I'd like to
        // avoid the overhead (both runtime and conceptual) of that.
        //
        // The following is basically my Shitty First Draft. Therefore, in
        // order to grok it, you probably need to read each line carefully.
        // Simplifications are most welcome!
        //
        // Remember, we can assume the canonical format invariant here, which
        // says that all ranges are sorted, not overlapping and not adjacent in
        // each class.
        let drain_end = self.ranges.len();
        let (mut a, mut b) = (0, 0);
        'LOOP: while a < drain_end && b < other.ranges.len() {
            // Basically, the easy cases are when neither range overlaps with
            // each other. If the `b` range is less than our current `a`
            // range, then we can skip it and move on.
            if other.ranges[b].upper() < self.ranges[a].lower() {
                b += 1;
                continue;
            }
            // ... similarly for the `a` range. If it's less than the smallest
            // `b` range, then we can add it as-is.
            if self.ranges[a].upper() < other.ranges[b].lower() {
                let range = self.ranges[a];
                self.ranges.push(range);
                a += 1;
                continue;
            }
            // Otherwise, we have overlapping ranges.
            assert!(!self.ranges[a].is_intersection_empty(&other.ranges[b]));

            // This part is tricky and was non-obvious to me without looking
            // at explicit examples (see the tests). The trickiness stems from
            // two things: 1) subtracting a range from another range could
            // yield two ranges and 2) after subtracting a range, it's possible
            // that future ranges can have an impact. The loop below advances
            // the `b` ranges until they can't possible impact the current
            // range.
            //
            // For example, if our `a` range is `a-t` and our next three `b`
            // ranges are `a-c`, `g-i`, `r-t` and `x-z`, then we need to apply
            // subtraction three times before moving on to the next `a` range.
            let mut range = self.ranges[a];
            while b < other.ranges.len()
                && !range.is_intersection_empty(&other.ranges[b])
            {
                let old_range = range;
                range = match range.difference(&other.ranges[b]) {
                    (None, None) => {
                        // We lost the entire range, so move on to the next
                        // without adding this one.
                        a += 1;
                        continue 'LOOP;
                    }
                    (Some(range1), None) | (None, Some(range1)) => range1,
                    (Some(range1), Some(range2)) => {
                        self.ranges.push(range1);
                        range2
                    }
                };
                // It's possible that the `b` range has more to contribute
                // here. In particular, if it is greater than the original
                // range, then it might impact the next `a` range *and* it
                // has impacted the current `a` range as much as possible,
                // so we can quit. We don't bump `b` so that the next `a`
                // range can apply it.
                if other.ranges[b].upper() > old_range.upper() {
                    break;
                }
                // Otherwise, the next `b` range might apply to the current
                // `a` range.
                b += 1;
            }
            self.ranges.push(range);
            a += 1;
        }
        while a < drain_end {
            let range = self.ranges[a];
            self.ranges.push(range);
            a += 1;
        }
        self.ranges.drain(..drain_end);
    }

    /// Compute the symmetric difference of the two sets, in place.
    ///
    /// This computes the symmetric difference of two interval sets. This
    /// removes all elements in this set that are also in the given set,
    /// but also adds all elements from the given set that aren't in this
    /// set. That is, the set will contain all elements in either set,
    /// but will not contain any elements that are in both sets.
    pub fn symmetric_difference(&mut self, other: &IntervalSet<I>) {
        // TODO(burntsushi): Fix this so that it amortizes allocation.
        let mut intersection = self.clone();
        intersection.intersect(other);
        self.union(other);
        self.difference(&intersection);
    }

    /// Negate this interval set.
    ///
    /// For all `x` where `x` is any element, if `x` was in this set, then it
    /// will not be in this set after negation.
    pub fn negate(&mut self) {
        if self.ranges.is_empty() {
            let (min, max) = (I::Bound::min_value(), I::Bound::max_value());
            self.ranges.push(I::create(min, max));
            return;
        }

        // There should be a way to do this in-place with constant memory,
        // but I couldn't figure out a simple way to do it. So just append
        // the negation to the end of this range, and then drain it before
        // we're done.
        let drain_end = self.ranges.len();

        // We do checked arithmetic below because of the canonical ordering
        // invariant.
        if self.ranges[0].lower() > I::Bound::min_value() {
            let upper = self.ranges[0].lower().decrement();
            self.ranges.push(I::create(I::Bound::min_value(), upper));
        }
        for i in 1..drain_end {
            let lower = self.ranges[i - 1].upper().increment();
            let upper = self.ranges[i].lower().decrement();
            self.ranges.push(I::create(lower, upper));
        }
        if self.ranges[drain_end - 1].upper() < I::Bound::max_value() {
            let lower = self.ranges[drain_end - 1].upper().increment();
            self.ranges.push(I::create(lower, I::Bound::max_value()));
        }
        self.ranges.drain(..drain_end);
    }

    /// Converts this set into a canonical ordering.
    fn canonicalize(&mut self) {
        if self.is_canonical() {
            return;
        }
        self.ranges.sort();
        assert!(!self.ranges.is_empty());

        // Is there a way to do this in-place with constant memory? I couldn't
        // figure out a way to do it. So just append the canonicalization to
        // the end of this range, and then drain it before we're done.
        let drain_end = self.ranges.len();
        for oldi in 0..drain_end {
            // If we've added at least one new range, then check if we can
            // merge this range in the previously added range.
            if self.ranges.len() > drain_end {
                let (last, rest) = self.ranges.split_last_mut().unwrap();
                if let Some(union) = last.union(&rest[oldi]) {
                    *last = union;
                    continue;
                }
            }
            let range = self.ranges[oldi];
            self.ranges.push(range);
        }
        self.ranges.drain(..drain_end);
    }

    /// Returns true if and only if this class is in a canonical ordering.
    fn is_canonical(&self) -> bool {
        for pair in self.ranges.windows(2) {
            if pair[0] >= pair[1] {
                return false;
            }
            if pair[0].is_contiguous(&pair[1]) {
                return false;
            }
        }
        true
    }
}

/// An iterator over intervals.
#[derive(Debug)]
pub struct IntervalSetIter<'a, I>(slice::Iter<'a, I>);

impl<'a, I> Iterator for IntervalSetIter<'a, I> {
    type Item = &'a I;

    fn next(&mut self) -> Option<&'a I> {
        self.0.next()
    }
}

pub trait Interval:
    Clone + Copy + Debug + Default + Eq + PartialEq + PartialOrd + Ord
{
    type Bound: Bound;

    fn lower(&self) -> Self::Bound;
    fn upper(&self) -> Self::Bound;
    fn set_lower(&mut self, bound: Self::Bound);
    fn set_upper(&mut self, bound: Self::Bound);
    fn case_fold_simple(
        &self,
        intervals: &mut Vec<Self>,
    ) -> Result<(), unicode::CaseFoldError>;

    /// Create a new interval.
    fn create(lower: Self::Bound, upper: Self::Bound) -> Self {
        let mut int = Self::default();
        if lower <= upper {
            int.set_lower(lower);
            int.set_upper(upper);
        } else {
            int.set_lower(upper);
            int.set_upper(lower);
        }
        int
    }

    /// Union the given overlapping range into this range.
    ///
    /// If the two ranges aren't contiguous, then this returns `None`.
    fn union(&self, other: &Self) -> Option<Self> {
        if !self.is_contiguous(other) {
            return None;
        }
        let lower = cmp::min(self.lower(), other.lower());
        let upper = cmp::max(self.upper(), other.upper());
        Some(Self::create(lower, upper))
    }

    /// Intersect this range with the given range and return the result.
    ///
    /// If the intersection is empty, then this returns `None`.
    fn intersect(&self, other: &Self) -> Option<Self> {
        let lower = cmp::max(self.lower(), other.lower());
        let upper = cmp::min(self.upper(), other.upper());
        if lower <= upper {
            Some(Self::create(lower, upper))
        } else {
            None
        }
    }

    /// Subtract the given range from this range and return the resulting
    /// ranges.
    ///
    /// If subtraction would result in an empty range, then no ranges are
    /// returned.
    fn difference(&self, other: &Self) -> (Option<Self>, Option<Self>) {
        if self.is_subset(other) {
            return (None, None);
        }
        if self.is_intersection_empty(other) {
            return (Some(self.clone()), None);
        }
        let add_lower = other.lower() > self.lower();
        let add_upper = other.upper() < self.upper();
        // We know this because !self.is_subset(other) and the ranges have
        // a non-empty intersection.
        assert!(add_lower || add_upper);
        let mut ret = (None, None);
        if add_lower {
            let upper = other.lower().decrement();
            ret.0 = Some(Self::create(self.lower(), upper));
        }
        if add_upper {
            let lower = other.upper().increment();
            let range = Self::create(lower, self.upper());
            if ret.0.is_none() {
                ret.0 = Some(range);
            } else {
                ret.1 = Some(range);
            }
        }
        ret
    }

    /// Compute the symmetric difference the given range from this range. This
    /// returns the union of the two ranges minus its intersection.
    fn symmetric_difference(
        &self,
        other: &Self,
    ) -> (Option<Self>, Option<Self>) {
        let union = match self.union(other) {
            None => return (Some(self.clone()), Some(other.clone())),
            Some(union) => union,
        };
        let intersection = match self.intersect(other) {
            None => return (Some(self.clone()), Some(other.clone())),
            Some(intersection) => intersection,
        };
        union.difference(&intersection)
    }

    /// Returns true if and only if the two ranges are contiguous. Two ranges
    /// are contiguous if and only if the ranges are either overlapping or
    /// adjacent.
    fn is_contiguous(&self, other: &Self) -> bool {
        let lower1 = self.lower().as_u32();
        let upper1 = self.upper().as_u32();
        let lower2 = other.lower().as_u32();
        let upper2 = other.upper().as_u32();
        cmp::max(lower1, lower2) <= cmp::min(upper1, upper2).saturating_add(1)
    }

    /// Returns true if and only if the intersection of this range and the
    /// other range is empty.
    fn is_intersection_empty(&self, other: &Self) -> bool {
        let (lower1, upper1) = (self.lower(), self.upper());
        let (lower2, upper2) = (other.lower(), other.upper());
        cmp::max(lower1, lower2) > cmp::min(upper1, upper2)
    }

    /// Returns true if and only if this range is a subset of the other range.
    fn is_subset(&self, other: &Self) -> bool {
        let (lower1, upper1) = (self.lower(), self.upper());
        let (lower2, upper2) = (other.lower(), other.upper());
        (lower2 <= lower1 && lower1 <= upper2)
            && (lower2 <= upper1 && upper1 <= upper2)
    }
}

pub trait Bound:
    Copy + Clone + Debug + Eq + PartialEq + PartialOrd + Ord
{
    fn min_value() -> Self;
    fn max_value() -> Self;
    fn as_u32(self) -> u32;
    fn increment(self) -> Self;
    fn decrement(self) -> Self;
}

impl Bound for u8 {
    fn min_value() -> Self {
        u8::MIN
    }
    fn max_value() -> Self {
        u8::MAX
    }
    fn as_u32(self) -> u32 {
        self as u32
    }
    fn increment(self) -> Self {
        self.checked_add(1).unwrap()
    }
    fn decrement(self) -> Self {
        self.checked_sub(1).unwrap()
    }
}

impl Bound for char {
    fn min_value() -> Self {
        '\x00'
    }
    fn max_value() -> Self {
        '\u{10FFFF}'
    }
    fn as_u32(self) -> u32 {
        self as u32
    }

    fn increment(self) -> Self {
        match self {
            '\u{D7FF}' => '\u{E000}',
            c => char::from_u32((c as u32).checked_add(1).unwrap()).unwrap(),
        }
    }

    fn decrement(self) -> Self {
        match self {
            '\u{E000}' => '\u{D7FF}',
            c => char::from_u32((c as u32).checked_sub(1).unwrap()).unwrap(),
        }
    }
}

// Tests for interval sets are written in src/hir.rs against the public API.