1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use codec::{Decode, Encode};
use hash_db::{HashDB, Hasher};
use scale_info::TypeInfo;
use sp_std::vec::Vec;
#[derive(Debug, PartialEq, Eq, Clone, Encode, Decode, TypeInfo)]
pub struct StorageProof {
trie_nodes: Vec<Vec<u8>>,
}
#[derive(Debug, PartialEq, Eq, Clone, Encode, Decode, TypeInfo)]
pub struct CompactProof {
pub encoded_nodes: Vec<Vec<u8>>,
}
impl StorageProof {
pub fn new(trie_nodes: Vec<Vec<u8>>) -> Self {
StorageProof { trie_nodes }
}
pub fn empty() -> Self {
StorageProof { trie_nodes: Vec::new() }
}
pub fn is_empty(&self) -> bool {
self.trie_nodes.is_empty()
}
pub fn iter_nodes(self) -> StorageProofNodeIterator {
StorageProofNodeIterator::new(self)
}
pub fn into_nodes(self) -> Vec<Vec<u8>> {
self.trie_nodes
}
pub fn into_memory_db<H: Hasher>(self) -> crate::MemoryDB<H> {
self.into()
}
pub fn merge<I>(proofs: I) -> Self
where
I: IntoIterator<Item = Self>,
{
let trie_nodes = proofs
.into_iter()
.flat_map(|proof| proof.iter_nodes())
.collect::<sp_std::collections::btree_set::BTreeSet<_>>()
.into_iter()
.collect();
Self { trie_nodes }
}
pub fn into_compact_proof<H: Hasher>(
self,
root: H::Out,
) -> Result<CompactProof, crate::CompactProofError<crate::Layout<H>>> {
crate::encode_compact::<crate::Layout<H>>(self, root)
}
pub fn encoded_compact_size<H: Hasher>(self, root: H::Out) -> Option<usize> {
let compact_proof = self.into_compact_proof::<H>(root);
compact_proof.ok().map(|p| p.encoded_size())
}
}
impl CompactProof {
pub fn iter_compact_encoded_nodes(&self) -> impl Iterator<Item = &[u8]> {
self.encoded_nodes.iter().map(Vec::as_slice)
}
pub fn to_storage_proof<H: Hasher>(
&self,
expected_root: Option<&H::Out>,
) -> Result<(StorageProof, H::Out), crate::CompactProofError<crate::Layout<H>>> {
let mut db = crate::MemoryDB::<H>::new(&[]);
let root = crate::decode_compact::<crate::Layout<H>, _, _>(
&mut db,
self.iter_compact_encoded_nodes(),
expected_root,
)?;
Ok((
StorageProof::new(
db.drain()
.into_iter()
.filter_map(|kv| if (kv.1).1 > 0 { Some((kv.1).0) } else { None })
.collect(),
),
root,
))
}
}
pub struct StorageProofNodeIterator {
inner: <Vec<Vec<u8>> as IntoIterator>::IntoIter,
}
impl StorageProofNodeIterator {
fn new(proof: StorageProof) -> Self {
StorageProofNodeIterator { inner: proof.trie_nodes.into_iter() }
}
}
impl Iterator for StorageProofNodeIterator {
type Item = Vec<u8>;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next()
}
}
impl<H: Hasher> From<StorageProof> for crate::MemoryDB<H> {
fn from(proof: StorageProof) -> Self {
let mut db = crate::MemoryDB::default();
for item in proof.iter_nodes() {
db.insert(crate::EMPTY_PREFIX, &item);
}
db
}
}