logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// taken from https://github.com/hyperium/http/blob/master/src/extensions.rs.

use crate::sync::{RwLockReadGuard, RwLockWriteGuard};
use std::{
    any::{Any, TypeId},
    collections::HashMap,
    fmt,
    hash::{BuildHasherDefault, Hasher},
};

#[allow(warnings)]
type AnyMap = HashMap<TypeId, Box<dyn Any + Send + Sync>, BuildHasherDefault<IdHasher>>;

/// With TypeIds as keys, there's no need to hash them. They are already hashes
/// themselves, coming from the compiler. The IdHasher holds the u64 of
/// the TypeId, and then returns it, instead of doing any bit fiddling.
#[derive(Default, Debug)]
struct IdHasher(u64);

impl Hasher for IdHasher {
    fn write(&mut self, _: &[u8]) {
        unreachable!("TypeId calls write_u64");
    }

    #[inline]
    fn write_u64(&mut self, id: u64) {
        self.0 = id;
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.0
    }
}

/// An immutable, read-only reference to a Span's extensions.
#[derive(Debug)]
pub struct Extensions<'a> {
    inner: RwLockReadGuard<'a, ExtensionsInner>,
}

impl<'a> Extensions<'a> {
    #[cfg(feature = "registry")]
    pub(crate) fn new(inner: RwLockReadGuard<'a, ExtensionsInner>) -> Self {
        Self { inner }
    }

    /// Immutably borrows a type previously inserted into this `Extensions`.
    pub fn get<T: 'static>(&self) -> Option<&T> {
        self.inner.get::<T>()
    }
}

/// An mutable reference to a Span's extensions.
#[derive(Debug)]
pub struct ExtensionsMut<'a> {
    inner: RwLockWriteGuard<'a, ExtensionsInner>,
}

impl<'a> ExtensionsMut<'a> {
    #[cfg(feature = "registry")]
    pub(crate) fn new(inner: RwLockWriteGuard<'a, ExtensionsInner>) -> Self {
        Self { inner }
    }

    /// Insert a type into this `Extensions`.
    ///
    /// Note that extensions are _not_
    /// `Layer`-specific—they are _span_-specific. This means that
    /// other layers can access and mutate extensions that
    /// a different Layer recorded. For example, an application might
    /// have a layer that records execution timings, alongside a layer
    /// that reports spans and events to a distributed
    /// tracing system that requires timestamps for spans.
    /// Ideally, if one layer records a timestamp _x_, the other layer
    /// should be able to reuse timestamp _x_.
    ///
    /// Therefore, extensions should generally be newtypes, rather than common
    /// types like [`String`](https://doc.rust-lang.org/std/string/struct.String.html), to avoid accidental
    /// cross-`Layer` clobbering.
    ///
    /// ## Panics
    ///
    /// If `T` is already present in `Extensions`, then this method will panic.
    pub fn insert<T: Send + Sync + 'static>(&mut self, val: T) {
        assert!(self.replace(val).is_none())
    }

    /// Replaces an existing `T` into this extensions.
    ///
    /// If `T` is not present, `Option::None` will be returned.
    pub fn replace<T: Send + Sync + 'static>(&mut self, val: T) -> Option<T> {
        self.inner.insert(val)
    }

    /// Get a mutable reference to a type previously inserted on this `ExtensionsMut`.
    pub fn get_mut<T: 'static>(&mut self) -> Option<&mut T> {
        self.inner.get_mut::<T>()
    }

    /// Remove a type from this `Extensions`.
    ///
    /// If a extension of this type existed, it will be returned.
    pub fn remove<T: Send + Sync + 'static>(&mut self) -> Option<T> {
        self.inner.remove::<T>()
    }
}

/// A type map of span extensions.
///
/// [ExtensionsInner] is used by `SpanData` to store and
/// span-specific data. A given `Layer` can read and write
/// data that it is interested in recording and emitting.
#[derive(Default)]
pub(crate) struct ExtensionsInner {
    map: AnyMap,
}

impl ExtensionsInner {
    /// Create an empty `Extensions`.
    #[inline]
    #[cfg(any(test, feature = "registry"))]
    pub(crate) fn new() -> ExtensionsInner {
        ExtensionsInner {
            map: AnyMap::default(),
        }
    }

    /// Insert a type into this `Extensions`.
    ///
    /// If a extension of this type already existed, it will
    /// be returned.
    pub(crate) fn insert<T: Send + Sync + 'static>(&mut self, val: T) -> Option<T> {
        self.map
            .insert(TypeId::of::<T>(), Box::new(val))
            .and_then(|boxed| {
                #[allow(warnings)]
                {
                    (boxed as Box<Any + 'static>)
                        .downcast()
                        .ok()
                        .map(|boxed| *boxed)
                }
            })
    }

    /// Get a reference to a type previously inserted on this `Extensions`.
    pub(crate) fn get<T: 'static>(&self) -> Option<&T> {
        self.map
            .get(&TypeId::of::<T>())
            .and_then(|boxed| (&**boxed as &(dyn Any + 'static)).downcast_ref())
    }

    /// Get a mutable reference to a type previously inserted on this `Extensions`.
    pub(crate) fn get_mut<T: 'static>(&mut self) -> Option<&mut T> {
        self.map
            .get_mut(&TypeId::of::<T>())
            .and_then(|boxed| (&mut **boxed as &mut (dyn Any + 'static)).downcast_mut())
    }

    /// Remove a type from this `Extensions`.
    ///
    /// If a extension of this type existed, it will be returned.
    pub(crate) fn remove<T: Send + Sync + 'static>(&mut self) -> Option<T> {
        self.map.remove(&TypeId::of::<T>()).and_then(|boxed| {
            #[allow(warnings)]
            {
                (boxed as Box<Any + 'static>)
                    .downcast()
                    .ok()
                    .map(|boxed| *boxed)
            }
        })
    }

    /// Clear the `ExtensionsInner` in-place, dropping any elements in the map but
    /// retaining allocated capacity.
    ///
    /// This permits the hash map allocation to be pooled by the registry so
    /// that future spans will not need to allocate new hashmaps.
    #[cfg(any(test, feature = "registry"))]
    pub(crate) fn clear(&mut self) {
        self.map.clear();
    }
}

impl fmt::Debug for ExtensionsInner {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Extensions")
            .field("len", &self.map.len())
            .field("capacity", &self.map.capacity())
            .finish()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug, PartialEq)]
    struct MyType(i32);

    #[test]
    fn test_extensions() {
        let mut extensions = ExtensionsInner::new();

        extensions.insert(5i32);
        extensions.insert(MyType(10));

        assert_eq!(extensions.get(), Some(&5i32));
        assert_eq!(extensions.get_mut(), Some(&mut 5i32));

        assert_eq!(extensions.remove::<i32>(), Some(5i32));
        assert!(extensions.get::<i32>().is_none());

        assert_eq!(extensions.get::<bool>(), None);
        assert_eq!(extensions.get(), Some(&MyType(10)));
    }

    #[test]
    fn clear_retains_capacity() {
        let mut extensions = ExtensionsInner::new();
        extensions.insert(5i32);
        extensions.insert(MyType(10));
        extensions.insert(true);

        assert_eq!(extensions.map.len(), 3);
        let prev_capacity = extensions.map.capacity();
        extensions.clear();

        assert_eq!(
            extensions.map.len(),
            0,
            "after clear(), extensions map should have length 0"
        );
        assert_eq!(
            extensions.map.capacity(),
            prev_capacity,
            "after clear(), extensions map should retain prior capacity"
        );
    }

    #[test]
    fn clear_drops_elements() {
        use std::sync::Arc;
        struct DropMePlease(Arc<()>);
        struct DropMeTooPlease(Arc<()>);

        let mut extensions = ExtensionsInner::new();
        let val1 = DropMePlease(Arc::new(()));
        let val2 = DropMeTooPlease(Arc::new(()));

        let val1_dropped = Arc::downgrade(&val1.0);
        let val2_dropped = Arc::downgrade(&val2.0);
        extensions.insert(val1);
        extensions.insert(val2);

        assert!(val1_dropped.upgrade().is_some());
        assert!(val2_dropped.upgrade().is_some());

        extensions.clear();
        assert!(
            val1_dropped.upgrade().is_none(),
            "after clear(), val1 should be dropped"
        );
        assert!(
            val2_dropped.upgrade().is_none(),
            "after clear(), val2 should be dropped"
        );
    }
}