1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Copyright 2019, 2020 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Compact encoding/decoding functions for partial Merkle-Patricia tries.
//!
//! A partial trie is a subset of the nodes in a complete trie, which can still be used to
//! perform authenticated lookups on a subset of keys. A naive encoding is the set of encoded nodes
//! in the partial trie. This, however, includes redundant hashes of other nodes in the partial
//! trie which could be computed directly. The compact encoding strips out all hash child
//! references to other nodes in the partial trie and replaces them with empty inline references,
//! indicating that the child reference is omitted. The nodes are then ordered in pre-order
//! traversal order so that the full nodes can be efficiently reconstructed recursively. Note that
//! hash references to nodes not in the partial trie are left intact. The compact encoding can be
//! expected to save roughly (n - 1) hashes in size where n is the number of nodes in the partial
//! trie.

use hash_db::HashDB;
use crate::{
	CError, ChildReference, DBValue, NibbleVec, NodeCodec, Result,
	TrieHash, TrieError, TrieDB, TrieDBNodeIterator, TrieLayout,
	nibble_ops::NIBBLE_LENGTH, node::{Node, NodeHandle, NodeHandlePlan, NodePlan, OwnedNode},
};
use crate::rstd::{
	boxed::Box, convert::TryInto, marker::PhantomData, rc::Rc, result, vec, vec::Vec,
};

struct EncoderStackEntry<C: NodeCodec> {
	/// The prefix is the nibble path to the node in the trie.
	prefix: NibbleVec,
	node: Rc<OwnedNode<DBValue>>,
	/// The next entry in the stack is a child of the preceding entry at this index. For branch
	/// nodes, the index is in [0, NIBBLE_LENGTH] and for extension nodes, the index is in [0, 1].
	child_index: usize,
	/// Flags indicating whether each child is omitted in the encoded node.
	omit_children: Vec<bool>,
	/// The encoding of the subtrie nodes rooted at this entry, which is built up in
	/// `encode_compact`.
	output_index: usize,
	_marker: PhantomData<C>,
}

impl<C: NodeCodec> EncoderStackEntry<C> {
	/// Given the prefix of the next child node, identify its index and advance `child_index` to
	/// that. For a given entry, this must be called sequentially only with strictly increasing
	/// child prefixes. Returns an error if the child prefix is not a child of this entry or if
	/// called with children out of order.
	///
	/// Preconditions:
	/// - self.prefix + partial must be a prefix of child_prefix.
	/// - if self.node is a branch, then child_prefix must be longer than self.prefix + partial.
	fn advance_child_index(&mut self, child_prefix: &NibbleVec)
		-> result::Result<(), &'static str>
	{
		match self.node.node_plan() {
			NodePlan::Empty | NodePlan::Leaf { .. } =>
				return Err("empty and leaf nodes have no children"),
			NodePlan::Extension { .. } => {
				if self.child_index != 0 {
					return Err("extension node cannot have multiple children")
				}
			}
			NodePlan::Branch { .. } => {
				if child_prefix.len() <= self.prefix.len() {
					return Err("child_prefix does not contain prefix");
				}
				let child_index = child_prefix.at(self.prefix.len()) as usize;
				if child_index < self.child_index {
					return Err("iterator returned children in non-ascending order by prefix");
				}
				self.child_index = child_index;
			}
			NodePlan::NibbledBranch { partial, .. } => {
				if child_prefix.len() <= self.prefix.len() + partial.len() {
					return Err("child_prefix does not contain prefix and node partial");
				}
				let child_index = child_prefix.at(self.prefix.len() + partial.len()) as usize;
				if child_index < self.child_index {
					return Err("iterator returned children in non-ascending order by prefix");
				}
				self.child_index = child_index;
			}
		}
		Ok(())
	}

	/// Generates the encoding of the subtrie rooted at this entry.
	fn encode_node(&self) -> Result<Vec<u8>, C::HashOut, C::Error> {
		let node_data = self.node.data();
		Ok(match self.node.node_plan() {
			NodePlan::Empty | NodePlan::Leaf { .. } => node_data.to_vec(),
			NodePlan::Extension { partial, child: _ } => {
				if !self.omit_children[0] {
					node_data.to_vec()
				} else {
					let partial = partial.build(node_data);
					let empty_child = ChildReference::Inline(C::HashOut::default(), 0);
					C::extension_node(partial.right_iter(), partial.len(), empty_child)
				}
			}
			NodePlan::Branch { value, children } => {
				C::branch_node(
					Self::branch_children(node_data, &children, &self.omit_children)?.iter(),
					value.clone().map(|range| &node_data[range])
				)
			}
			NodePlan::NibbledBranch { partial, value, children } => {
				let partial = partial.build(node_data);
				C::branch_node_nibbled(
					partial.right_iter(),
					partial.len(),
					Self::branch_children(node_data, &children, &self.omit_children)?.iter(),
					value.clone().map(|range| &node_data[range])
				)
			}
		})
	}

	/// Generate the list of child references for a branch node with certain children omitted.
	///
	/// Preconditions:
	/// - omit_children has size NIBBLE_LENGTH.
	/// - omit_children[i] is only true if child_handles[i] is Some
	fn branch_children(
		node_data: &[u8],
		child_handles: &[Option<NodeHandlePlan>; NIBBLE_LENGTH],
		omit_children: &[bool],
	) -> Result<[Option<ChildReference<C::HashOut>>; NIBBLE_LENGTH], C::HashOut, C::Error>
	{
		let empty_child = ChildReference::Inline(C::HashOut::default(), 0);
		let mut children = [None; NIBBLE_LENGTH];
		for i in 0..NIBBLE_LENGTH {
			children[i] = if omit_children[i] {
				Some(empty_child)
			} else if let Some(child_plan) = &child_handles[i] {
				let child_ref = child_plan
					.build(node_data)
					.try_into()
					.map_err(|hash| Box::new(
						TrieError::InvalidHash(C::HashOut::default(), hash)
					))?;
				Some(child_ref)
			} else {
				None
			};
		}
		Ok(children)
	}
}

/// Generates a compact representation of the partial trie stored in the given DB. The encoding
/// is a vector of mutated trie nodes with those child references omitted. The mutated trie nodes
/// are listed in pre-order traversal order so that the full nodes can be efficiently
/// reconstructed recursively.
///
/// This function makes the assumption that all child references in an inline trie node are inline
/// references.
pub fn encode_compact<L>(db: &TrieDB<L>) -> Result<Vec<Vec<u8>>, TrieHash<L>, CError<L>>
	where
		L: TrieLayout
{
	let mut output = Vec::new();

	// The stack of nodes through a path in the trie. Each entry is a child node of the preceding
	// entry.
	let mut stack: Vec<EncoderStackEntry<L::Codec>> = Vec::new();

	// TrieDBNodeIterator guarantees that:
	// - It yields at least one node.
	// - The first node yielded is the root node with an empty prefix and is not inline.
	// - The prefixes yielded are in strictly increasing lexographic order.
	let iter = TrieDBNodeIterator::new(db)?;

	// Following from the guarantees about TrieDBNodeIterator, we guarantee that after the first
	// iteration of the loop below, the stack always has at least one entry and the bottom (front)
	// of the stack is the root node, which is not inline. Furthermore, the iterator is not empty,
	// so at least one iteration always occurs.
	for item in iter {
		match item {
			Ok((prefix, node_hash, node)) => {
				// Skip inline nodes, as they cannot contain hash references to other nodes by
				// assumption.
				if node_hash.is_none() {
					continue;
				}

				// Unwind the stack until the new entry is a child of the last entry on the stack.
				// If the stack entry prefix is a prefix of the new entry prefix, then it must be a
				// direct parent as the nodes are yielded from the iterator in pre-order traversal
				// order.
				while let Some(mut last_entry) = stack.pop() {
					if prefix.starts_with(&last_entry.prefix) {
						// advance_child_index preconditions are satisfied because of iterator
						// correctness.
						last_entry.advance_child_index(&prefix)
							.expect(
								"all errors from advance_child_index indicate bugs with \
								TrieDBNodeIterator or this function"
							);
						last_entry.omit_children[last_entry.child_index] = true;
						last_entry.child_index += 1;
						stack.push(last_entry);
						break;
					} else {
						output[last_entry.output_index] = last_entry.encode_node()?;
					}
				}

				let children_len = match node.node_plan() {
					NodePlan::Empty | NodePlan::Leaf { .. } => 0,
					NodePlan::Extension { .. } => 1,
					NodePlan::Branch { .. } | NodePlan::NibbledBranch { .. } => NIBBLE_LENGTH,
				};
				stack.push(EncoderStackEntry {
					prefix,
					node,
					child_index: 0,
					omit_children: vec![false; children_len],
					output_index: output.len(),
					_marker: PhantomData::default(),
				});
				// Insert a placeholder into output which will be replaced when this new entry is
				// popped from the stack.
				output.push(Vec::new());
			}
			Err(err) => match *err {
				// If we hit an IncompleteDatabaseError, just ignore it and continue encoding the
				// incomplete trie. This encoding must support partial tries, which can be used for
				// space-efficient storage proofs.
				TrieError::IncompleteDatabase(_) => {},
				_ => return Err(err),
			}
		}
	}

	while let Some(entry) = stack.pop() {
		output[entry.output_index] = entry.encode_node()?;
	}

	Ok(output)
}

struct DecoderStackEntry<'a, C: NodeCodec> {
	node: Node<'a>,
	/// The next entry in the stack is a child of the preceding entry at this index. For branch
	/// nodes, the index is in [0, NIBBLE_LENGTH] and for extension nodes, the index is in [0, 1].
	child_index: usize,
	/// The reconstructed child references.
	children: Vec<Option<ChildReference<C::HashOut>>>,
	_marker: PhantomData<C>,
}

impl<'a, C: NodeCodec> DecoderStackEntry<'a, C> {
	/// Advance the child index until either it exceeds the number of children or the child is
	/// marked as omitted. Omitted children are indicated by an empty inline reference. For each
	/// child that is passed over and not omitted, copy over the child reference from the node to
	/// this entries `children` list.
	///
	/// Returns true if the child index is past the last child, meaning the `children` references
	/// list is complete. If this returns true and the entry is an extension node, then
	/// `children[0]` is guaranteed to be Some.
	fn advance_child_index(&mut self) -> Result<bool, C::HashOut, C::Error> {
		match self.node {
			Node::Extension(_, child) if self.child_index == 0 => {
				match child {
					NodeHandle::Inline(data) if data.is_empty() =>
						return Ok(false),
					_ => {
						let child_ref = child.try_into()
							.map_err(|hash| Box::new(
								TrieError::InvalidHash(C::HashOut::default(), hash)
							))?;
						self.children[self.child_index] = Some(child_ref);
					}
				}
				self.child_index += 1;
			}
			Node::Branch(children, _) | Node::NibbledBranch(_, children, _) => {
				while self.child_index < NIBBLE_LENGTH {
					match children[self.child_index] {
						Some(NodeHandle::Inline(data)) if data.is_empty() =>
							return Ok(false),
						Some(child) => {
							let child_ref = child.try_into()
								.map_err(|hash| Box::new(
									TrieError::InvalidHash(C::HashOut::default(), hash)
								))?;
							self.children[self.child_index] = Some(child_ref);
						}
						None => {}
					}
					self.child_index += 1;
				}
			}
			_ => {}
		}
		Ok(true)
	}

	/// Push the partial key of this entry's node (including the branch nibble) to the given
	/// prefix.
	fn push_to_prefix(&self, prefix: &mut NibbleVec) {
		match self.node {
			Node::Empty => {}
			Node::Leaf(partial, _) | Node::Extension(partial, _) => {
				prefix.append_partial(partial.right());
			}
			Node::Branch(_, _) => {
				prefix.push(self.child_index as u8);
			}
			Node::NibbledBranch(partial, _, _) => {
				prefix.append_partial(partial.right());
				prefix.push(self.child_index as u8);
			}
		}
	}

	/// Pop the partial key of this entry's node (including the branch nibble) from the given
	/// prefix.
	fn pop_from_prefix(&self, prefix: &mut NibbleVec) {
		match self.node {
			Node::Empty => {}
			Node::Leaf(partial, _) | Node::Extension(partial, _) => {
				prefix.drop_lasts(partial.len());
			}
			Node::Branch(_, _) => {
				prefix.pop();
			}
			Node::NibbledBranch(partial, _, _) => {
				prefix.pop();
				prefix.drop_lasts(partial.len());
			}
		}
	}

	/// Reconstruct the encoded full trie node from the node and the entry's child references.
	///
	/// Preconditions:
	/// - if node is an extension node, then `children[0]` is Some.
	fn encode_node(self) -> Vec<u8> {
		match self.node {
			Node::Empty =>
				C::empty_node().to_vec(),
			Node::Leaf(partial, value) =>
				C::leaf_node(partial.right(), value),
			Node::Extension(partial, _) =>
				C::extension_node(
					partial.right_iter(),
					partial.len(),
					self.children[0]
						.expect("required by method precondition; qed"),
				),
			Node::Branch(_, value) =>
				C::branch_node(self.children.into_iter(), value),
			Node::NibbledBranch(partial, _, value) =>
				C::branch_node_nibbled(
					partial.right_iter(),
					partial.len(),
					self.children.iter(),
					value,
				),
		}
	}
}

/// Reconstructs a partial trie DB from a compact representation. The encoding is a vector of
/// mutated trie nodes with those child references omitted. The decode function reads them in order
/// from the given slice, reconstructing the full nodes and inserting them into the given `HashDB`.
/// It stops after fully constructing one partial trie and returns the root hash and the number of
/// nodes read. If an error occurs during decoding, there are no guarantees about which entries
/// were or were not added to the DB.
///
/// The number of nodes read may be fewer than the total number of items in `encoded`. This allows
/// one to concatenate multiple compact encodings together and still reconstruct them all.
//
/// This function makes the assumption that all child references in an inline trie node are inline
/// references.
pub fn decode_compact<L, DB, T>(db: &mut DB, encoded: &[Vec<u8>])
	-> Result<(TrieHash<L>, usize), TrieHash<L>, CError<L>>
	where
		L: TrieLayout,
		DB: HashDB<L::Hash, T>,
{
	decode_compact_from_iter::<L, DB, T, _>(db, encoded.iter().map(Vec::as_slice))
}

/// Variant of 'decode_compact' that accept an iterator of encoded nodes as input.
pub fn decode_compact_from_iter<'a, L, DB, T, I>(db: &mut DB, encoded: I)
	-> Result<(TrieHash<L>, usize), TrieHash<L>, CError<L>>
	where
		L: TrieLayout,
		DB: HashDB<L::Hash, T>,
		I: IntoIterator<Item = &'a [u8]>,
{
	// The stack of nodes through a path in the trie. Each entry is a child node of the preceding
	// entry.
	let mut stack: Vec<DecoderStackEntry<L::Codec>> = Vec::new();

	// The prefix of the next item to be read from the slice of encoded items.
	let mut prefix = NibbleVec::new();

	for (i, encoded_node) in encoded.into_iter().enumerate() {
		let node = L::Codec::decode(encoded_node)
			.map_err(|err| Box::new(TrieError::DecoderError(<TrieHash<L>>::default(), err)))?;

		let children_len = match node {
			Node::Empty | Node::Leaf(..) => 0,
			Node::Extension(..) => 1,
			Node::Branch(..) | Node::NibbledBranch(..) => NIBBLE_LENGTH,
		};
		let mut last_entry = DecoderStackEntry {
			node,
			child_index: 0,
			children: vec![None; children_len],
			_marker: PhantomData::default(),
		};

		loop {
			if !last_entry.advance_child_index()? {
				last_entry.push_to_prefix(&mut prefix);
				stack.push(last_entry);
				break;
			}

			// Since `advance_child_index` returned true, the preconditions for `encode_node` are
			// satisfied.
			let node_data = last_entry.encode_node();
			let node_hash = db.insert(prefix.as_prefix(), node_data.as_ref());

			if let Some(entry) = stack.pop() {
				last_entry = entry;
				last_entry.pop_from_prefix(&mut prefix);
				last_entry.children[last_entry.child_index] =
					Some(ChildReference::Hash(node_hash));
				last_entry.child_index += 1;
			} else {
				return Ok((node_hash, i + 1));
			}
		}
	}

	Err(Box::new(TrieError::IncompleteDatabase(<TrieHash<L>>::default())))
}