Expand description
Provides the beta and related function
Functions
Computes the beta function
where a
is the first beta parameter
and b
is the second beta parameter.
Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)
for a > 0, b > 0, 1 >= x >= 0
where a
is the first beta parameter, b
is the second beta parameter, and
x
is the upper limit of the integral
Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)
a > 0
, b > 0
, 1 >= x >= 0
where a
is the first beta parameter,
b
is the second beta parameter, and x
is the upper limit of the
integral.
Computes the beta function
where a
is the first beta parameter
and b
is the second beta parameter.
Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)
for a > 0, b > 0, 1 >= x >= 0
where a
is the first beta parameter, b
is the second beta parameter, and
x
is the upper limit of the integral
Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)
a > 0
, b > 0
, 1 >= x >= 0
where a
is the first beta parameter,
b
is the second beta parameter, and x
is the upper limit of the
integral.
Computes the natural logarithm
of the beta function
where a
is the first beta parameter
and b
is the second beta parameter
and a > 0
, b > 0
.
Computes the inverse of the regularized incomplete beta function
Computes the natural logarithm
of the beta function
where a
is the first beta parameter
and b
is the second beta parameter
and a > 0
, b > 0
.