Expand description
A matrix with one column and D
rows.
Implementations
Computes self = a * x * c + b * self
.
If b
is zero, self
is never read from.
Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axcpy(5.0, &vec2, 2.0, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Computes self = a * x + b * self
.
If b
is zero, self
is never read from.
Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axpy(10.0, &vec2, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Computes self = alpha * a * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
If beta
is zero, self
is never read.
Examples:
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let mat = Matrix2::new(1.0, 2.0,
3.0, 4.0);
vec1.gemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 21.0));
pub fn gemv_symm<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
👎 Deprecated: This is renamed sygemv
to match the original BLAS terminology.
pub fn gemv_symm<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
This is renamed sygemv
to match the original BLAS terminology.
Computes self = alpha * a * x + beta * self
, where a
is a symmetric matrix, x
a
vector, and alpha, beta
two scalars. DEPRECATED: use sygemv
instead.
pub fn sygemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
pub fn sygemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: One,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
Computes self = alpha * a * x + beta * self
, where a
is a symmetric matrix, x
a
vector, and alpha, beta
two scalars.
For hermitian matrices, use .hegemv
instead.
If beta
is zero, self
is never read. If self
is read, only its lower-triangular part
(including the diagonal) is actually read.
Examples:
let mat = Matrix2::new(1.0, 2.0,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(1.0, 9999999.9999999,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
pub fn hegemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: SimdComplexField,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
pub fn hegemv<D2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &SquareMatrix<T, D2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: SimdComplexField,
SB: Storage<T, D2, D2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,
Computes self = alpha * a * x + beta * self
, where a
is an hermitian matrix, x
a
vector, and alpha, beta
two scalars.
If beta
is zero, self
is never read. If self
is read, only its lower-triangular part
(including the diagonal) is actually read.
Examples:
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(2.0, -0.1),
Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(99999999.9, 999999999.9),
Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
Computes self = alpha * a.transpose() * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
If beta
is zero, self
is never read.
Examples:
let mat = Matrix2::new(1.0, 3.0,
2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;
vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, expected);
pub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
pub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>(
&mut self,
alpha: T,
a: &Matrix<T, R2, C2, SB>,
x: &Vector<T, D3, SC>,
beta: T
) where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
SC: Storage<T, D3>,
ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,
Computes self = alpha * a.adjoint() * x + beta * self
, where a
is a matrix, x
a vector, and
alpha, beta
two scalars.
For real matrices, this is the same as .gemv_tr
.
If beta
is zero, self
is never read.
Examples:
let mat = Matrix2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0),
Complex::new(5.0, 6.0), Complex::new(7.0, 8.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
let expected = mat.adjoint() * vec2 * Complex::new(10.0, 20.0) + vec1 * Complex::new(5.0, 15.0);
vec1.gemv_ad(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, expected);
Gets a reference to the i-th element of this column vector without bound checking.
Gets a mutable reference to the i-th element of this column vector without bound checking.
pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>> where
DefaultAllocator: Allocator<T, DimSum<D, U1>>,
pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>> where
DefaultAllocator: Allocator<T, DimSum<D, U1>>,
Computes the coordinates in projective space of this vector, i.e., appends a 0
to its
coordinates.
Constructs a vector from coordinates in projective space, i.e., removes a 0
at the end of
self
. Returns None
if this last component is not zero.
Computes the matrix M
such that for all vector v
we have M * v == self.cross(&v)
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Builds a new vector from components of self
.
Returns self * (1.0 - t) + rhs * t
, i.e., the linear blend of the vectors x and y using the scalar value a.
The value for a is not restricted to the range [0, 1]
.
Examples:
let x = Vector3::new(1.0, 2.0, 3.0);
let y = Vector3::new(10.0, 20.0, 30.0);
assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
Computes the spherical linear interpolation between two non-zero vectors.
The result is a unit vector.
Examples:
let v1 =Vector2::new(1.0, 2.0);
let v2 = Vector2::new(2.0, -3.0);
let v = v1.slerp(&v2, 1.0);
assert_eq!(v, v2.normalize());
Computes the index of the vector component with the largest complex or real absolute value.
Examples:
let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
assert_eq!(vec.icamax(), 2);
Computes the index and value of the vector component with the largest value.
Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmax(), (2, 13));
Computes the index of the vector component with the largest value.
Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imax(), 2);
Computes the index of the vector component with the largest absolute value.
Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamax(), 1);
Computes the index and value of the vector component with the smallest value.
Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmin(), (1, -15));
Computes the index of the vector component with the smallest value.
Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imin(), 1);