Type Definition nalgebra::geometry::Translation3
source · [−]pub type Translation3<T> = Translation<T, 3>;
Expand description
A 3-dimensional translation.
Trait Implementations
impl<'a, 'b, T: SimdRealField> Div<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a Translation3<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, T: SimdRealField> Mul<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'a Unit<DualQuaternion<T>>> for &'b Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a Translation3<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for Translation3<T> where
T::Element: SimdRealField,
type Output = UnitDualQuaternion<T>
type Output = UnitDualQuaternion<T>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Translation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Translation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more