pub struct Schur<T: ComplexField, D: Dim> where
DefaultAllocator: Allocator<T, D, D>, { /* private fields */ }
Expand description
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField Schur decomposition.
Implementations
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues()
instead.
Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
Retrieves the unitary matrix Q
and the upper-quasitriangular matrix T
such that the
decomposed matrix equals Q * T * Q.transpose()
.
Computes the real eigenvalues of the decomposed matrix.
Return None
if some eigenvalues are complex.
pub fn complex_eigenvalues(&self) -> OVector<NumComplex<T>, D> where
T: RealField,
DefaultAllocator: Allocator<NumComplex<T>, D>,
pub fn complex_eigenvalues(&self) -> OVector<NumComplex<T>, D> where
T: RealField,
DefaultAllocator: Allocator<NumComplex<T>, D>,
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations
impl<T: Clone + ComplexField, D: Clone + Dim> Clone for Schur<T, D> where
DefaultAllocator: Allocator<T, D, D>,
impl<T: Clone + ComplexField, D: Clone + Dim> Clone for Schur<T, D> where
DefaultAllocator: Allocator<T, D, D>,
impl<T: Debug + ComplexField, D: Debug + Dim> Debug for Schur<T, D> where
DefaultAllocator: Allocator<T, D, D>,
impl<T: Debug + ComplexField, D: Debug + Dim> Debug for Schur<T, D> where
DefaultAllocator: Allocator<T, D, D>,
impl<T: ComplexField, D: Dim> Copy for Schur<T, D> where
DefaultAllocator: Allocator<T, D, D>,
OMatrix<T, D, D>: Copy,
Auto Trait Implementations
impl<T, D> !RefUnwindSafe for Schur<T, D>
impl<T, D> !UnwindSafe for Schur<T, D>
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.