Struct statrs::distribution::Triangular
source · [−]pub struct Triangular { /* private fields */ }
Expand description
Implements the Triangular distribution
Examples
use statrs::distribution::{Triangular, Continuous};
use statrs::statistics::Distribution;
let n = Triangular::new(0.0, 5.0, 2.5).unwrap();
assert_eq!(n.mean().unwrap(), 7.5 / 3.0);
assert_eq!(n.pdf(2.5), 5.0 / 12.5);
Implementations
Constructs a new triangular distribution with a minimum of min
,
maximum of max
, and a mode of mode
.
Errors
Returns an error if min
, max
, or mode
are NaN
or ±INF
.
Returns an error if max < mode
, mode < min
, or max == min
.
Examples
use statrs::distribution::Triangular;
let mut result = Triangular::new(0.0, 5.0, 2.5);
assert!(result.is_ok());
result = Triangular::new(2.5, 1.5, 0.0);
assert!(result.is_err());
Trait Implementations
Calculates the probability density function for the triangular
distribution
at x
Formula
if x < min {
0
} else if min <= x <= mode {
2 * (x - min) / ((max - min) * (mode - min))
} else if mode < x <= max {
2 * (max - x) / ((max - min) * (max - mode))
} else {
0
}
Calculates the log probability density function for the triangular
distribution
at x
Formula
ln( if x < min {
0
} else if min <= x <= mode {
2 * (x - min) / ((max - min) * (mode - min))
} else if mode < x <= max {
2 * (max - x) / ((max - min) * (max - mode))
} else {
0
} )
Calculates the cumulative distribution function for the triangular
distribution
at x
Formula
if x == min {
0
} if min < x <= mode {
(x - min)^2 / ((max - min) * (mode - min))
} else if mode < x < max {
1 - (max - min)^2 / ((max - min) * (max - mode))
} else {
1
}
Due to issues with rounding and floating-point accuracy the default
implementation may be ill-behaved.
Specialized inverse cdfs should be used whenever possible.
Performs a binary search on the domain of cdf
to obtain an approximation
of F^-1(p) := inf { x | F(x) >= p }
. Needless to say, performance may
may be lacking. Read more
Generate a random value of T
, using rng
as the source of randomness.
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
Returns the variance of the triangular distribution
Formula
(min^2 + max^2 + mode^2 - min * max - min * mode - max * mode) / 18
Returns the skewness of the triangular distribution
Formula
(sqrt(2) * (min + max - 2 * mode) * (2 * min - max - mode) * (min - 2 *
max + mode)) /
( 5 * (min^2 + max^2 + mode^2 - min * max - min * mode - max * mode)^(3
/ 2))
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
This method tests for !=
.
Auto Trait Implementations
impl RefUnwindSafe for Triangular
impl Send for Triangular
impl Sync for Triangular
impl Unpin for Triangular
impl UnwindSafe for Triangular
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.