Struct statrs::statistics::Data
source · [−]pub struct Data<D>(_);Implementations
Trait Implementations
Generate a random value of T, using rng as the source of randomness.
Create an iterator that generates random values of T, using rng as
the source of randomness. Read more
Evaluates the sample mean, an estimate of the population mean.
Remarks
Returns f64::NAN if data is empty or an entry is f64::NAN
Examples
#[macro_use]
extern crate statrs;
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.mean().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.mean().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_almost_eq!(z.mean().unwrap(), 1.0 / 3.0, 1e-15);Estimates the unbiased population variance from the provided samples
Remarks
On a dataset of size N, N-1 is used as a normalizer (Bessel’s
correction).
Returns f64::NAN if data has less than two entries or if any entry is
f64::NAN
Examples
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.variance().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.variance().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.variance().unwrap(), 19.0 / 3.0);Returns the maximum value in the data
Remarks
Returns f64::NAN if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Max;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.max().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.max().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.max(), 3.0);Returns the minimum value in the data
Remarks
Returns f64::NAN if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Min;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.min().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.min().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.min(), -2.0);Returns the order statistic (order 1..N) from the data Read more
Estimates the tau-th quantile from the data. The tau-th quantile is the data value where the cumulative distribution function crosses tau. Read more
Estimates the p-Percentile value from the data. Read more
Estimates the first quartile value from the data. Read more
Estimates the third quartile value from the data. Read more
Estimates the inter-quartile range from the data. Read more
Auto Trait Implementations
impl<D> RefUnwindSafe for Data<D> where
D: RefUnwindSafe,
impl<D> UnwindSafe for Data<D> where
D: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self from the equivalent element of its
superset. Read more
Checks if self is actually part of its subset T (and can be converted to it).
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
The inclusion map: converts self to the equivalent element of its superset.