Struct statrs::statistics::Data
source · [−]pub struct Data<D>(_);
Implementations
Trait Implementations
Generate a random value of T
, using rng
as the source of randomness.
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
Evaluates the sample mean, an estimate of the population mean.
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
#[macro_use]
extern crate statrs;
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.mean().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.mean().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_almost_eq!(z.mean().unwrap(), 1.0 / 3.0, 1e-15);
Estimates the unbiased population variance from the provided samples
Remarks
On a dataset of size N
, N-1
is used as a normalizer (Bessel’s
correction).
Returns f64::NAN
if data has less than two entries or if any entry is
f64::NAN
Examples
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.variance().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.variance().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.variance().unwrap(), 19.0 / 3.0);
Returns the maximum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Max;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.max().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.max().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.max(), 3.0);
Returns the minimum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Min;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.min().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.min().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.min(), -2.0);
Returns the order statistic (order 1..N)
from the data Read more
Estimates the tau-th quantile from the data. The tau-th quantile is the data value where the cumulative distribution function crosses tau. Read more
Estimates the p-Percentile value from the data. Read more
Estimates the first quartile value from the data. Read more
Estimates the third quartile value from the data. Read more
Estimates the inter-quartile range from the data. Read more
Auto Trait Implementations
impl<D> RefUnwindSafe for Data<D> where
D: RefUnwindSafe,
impl<D> UnwindSafe for Data<D> where
D: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.