Struct statrs::distribution::StudentsT
source · [−]pub struct StudentsT { /* private fields */ }
Expand description
Implements the Student’s T distribution
Examples
use statrs::distribution::{StudentsT, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.mean().unwrap(), 0.0);
assert!(prec::almost_eq(n.pdf(0.0), 0.353553390593274, 1e-15));
Implementations
Constructs a new student’s t-distribution with location location
,
scale scale
,
and freedom
freedom.
Errors
Returns an error if any of location
, scale
, or freedom
are NaN
.
Returns an error if scale <= 0.0
or freedom <= 0.0
Examples
use statrs::distribution::StudentsT;
let mut result = StudentsT::new(0.0, 1.0, 2.0);
assert!(result.is_ok());
result = StudentsT::new(0.0, 0.0, 0.0);
assert!(result.is_err());
Returns the location of the student’s t-distribution
Examples
use statrs::distribution::StudentsT;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.location(), 0.0);
Returns the scale of the student’s t-distribution
Examples
use statrs::distribution::StudentsT;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.scale(), 1.0);
Trait Implementations
Calculates the probability density function for the student’s
t-distribution
at x
Formula
Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 * (v
+ 1))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
Calculates the log probability density function for the student’s
t-distribution
at x
Formula
ln(Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 *
(v + 1)))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
Calculates the cumulative distribution function for the student’s
t-distribution
at x
Formula
if x < μ {
(1 / 2) * I(t, v / 2, 1 / 2)
} else {
1 - (1 / 2) * I(t, v / 2, 1 / 2)
}
where t = v / (v + k^2)
, k = (x - μ) / σ
, μ
is the location,
σ
is the scale, v
is the freedom, and I
is the regularized
incomplete
beta function
Calculates the inverse cumulative distribution function for the
Student’s T-distribution at x
Generate a random value of T
, using rng
as the source of randomness.
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
Returns the entropy for the student’s t-distribution
Formula
- ln(σ) + (v + 1) / 2 * (ψ((v + 1) / 2) - ψ(v / 2)) + ln(sqrt(v) * B(v / 2, 1 /
2))
where σ
is the scale, v
is the freedom, ψ
is the digamma function, and B
is the
beta function
Auto Trait Implementations
impl RefUnwindSafe for StudentsT
impl UnwindSafe for StudentsT
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.