Enum scale_info::prelude::ops::ControlFlow
1.55.0 · source · [−]pub enum ControlFlow<B, C = ()> {
Continue(C),
Break(B),
}Expand description
Used to tell an operation whether it should exit early or go on as usual.
This is used when exposing things (like graph traversals or visitors) where
you want the user to be able to choose whether to exit early.
Having the enum makes it clearer – no more wondering “wait, what did false
mean again?” – and allows including a value.
Similar to Option and Result, this enum can be used with the ? operator
to return immediately if the Break variant is present or otherwise continue normally
with the value inside the Continue variant.
Examples
Early-exiting from Iterator::try_for_each:
use std::ops::ControlFlow;
let r = (2..100).try_for_each(|x| {
if 403 % x == 0 {
return ControlFlow::Break(x)
}
ControlFlow::Continue(())
});
assert_eq!(r, ControlFlow::Break(13));A basic tree traversal:
use std::ops::ControlFlow;
pub struct TreeNode<T> {
value: T,
left: Option<Box<TreeNode<T>>>,
right: Option<Box<TreeNode<T>>>,
}
impl<T> TreeNode<T> {
pub fn traverse_inorder<B>(&self, f: &mut impl FnMut(&T) -> ControlFlow<B>) -> ControlFlow<B> {
if let Some(left) = &self.left {
left.traverse_inorder(f)?;
}
f(&self.value)?;
if let Some(right) = &self.right {
right.traverse_inorder(f)?;
}
ControlFlow::Continue(())
}
fn leaf(value: T) -> Option<Box<TreeNode<T>>> {
Some(Box::new(Self { value, left: None, right: None }))
}
}
let node = TreeNode {
value: 0,
left: TreeNode::leaf(1),
right: Some(Box::new(TreeNode {
value: -1,
left: TreeNode::leaf(5),
right: TreeNode::leaf(2),
}))
};
let mut sum = 0;
let res = node.traverse_inorder(&mut |val| {
if *val < 0 {
ControlFlow::Break(*val)
} else {
sum += *val;
ControlFlow::Continue(())
}
});
assert_eq!(res, ControlFlow::Break(-1));
assert_eq!(sum, 6);Variants
Continue(C)
Move on to the next phase of the operation as normal.
Break(B)
Exit the operation without running subsequent phases.
Implementations
Returns true if this is a Break variant.
Examples
#![feature(control_flow_enum)]
use std::ops::ControlFlow;
assert!(ControlFlow::<i32, String>::Break(3).is_break());
assert!(!ControlFlow::<String, i32>::Continue(3).is_break());Returns true if this is a Continue variant.
Examples
#![feature(control_flow_enum)]
use std::ops::ControlFlow;
assert!(!ControlFlow::<i32, String>::Break(3).is_continue());
assert!(ControlFlow::<String, i32>::Continue(3).is_continue());🔬 This is a nightly-only experimental API. (control_flow_enum)
control_flow_enum)Converts the ControlFlow into an Option which is Some if the
ControlFlow was Break and None otherwise.
Examples
#![feature(control_flow_enum)]
use std::ops::ControlFlow;
assert_eq!(ControlFlow::<i32, String>::Break(3).break_value(), Some(3));
assert_eq!(ControlFlow::<String, i32>::Continue(3).break_value(), None);🔬 This is a nightly-only experimental API. (control_flow_enum)
control_flow_enum)Maps ControlFlow<B, C> to ControlFlow<T, C> by applying a function
to the break value in case it exists.
🔬 This is a nightly-only experimental API. (control_flow_enum)
control_flow_enum)It’s frequently the case that there’s no value needed with Continue,
so this provides a way to avoid typing (()), if you prefer it.
Examples
#![feature(control_flow_enum)]
use std::ops::ControlFlow;
let mut partial_sum = 0;
let last_used = (1..10).chain(20..25).try_for_each(|x| {
partial_sum += x;
if partial_sum > 100 { ControlFlow::Break(x) }
else { ControlFlow::CONTINUE }
});
assert_eq!(last_used.break_value(), Some(22));🔬 This is a nightly-only experimental API. (control_flow_enum)
control_flow_enum)APIs like try_for_each don’t need values with Break,
so this provides a way to avoid typing (()), if you prefer it.
Examples
#![feature(control_flow_enum)]
use std::ops::ControlFlow;
let mut partial_sum = 0;
(1..10).chain(20..25).try_for_each(|x| {
if partial_sum > 100 { ControlFlow::BREAK }
else { partial_sum += x; ControlFlow::CONTINUE }
});
assert_eq!(partial_sum, 108);Trait Implementations
try_trait_v2)Constructs the type from a compatible Residual type. Read more
impl<B, C> PartialEq<ControlFlow<B, C>> for ControlFlow<B, C> where
B: PartialEq<B>,
C: PartialEq<C>,
impl<B, C> PartialEq<ControlFlow<B, C>> for ControlFlow<B, C> where
B: PartialEq<B>,
C: PartialEq<C>,
This method tests for self and other values to be equal, and is used
by ==. Read more
This method tests for !=.
type TryType = ControlFlow<B, C>
type TryType = ControlFlow<B, C>
try_trait_v2_residual)The “return” type of this meta-function.
type Output = C
type Output = C
try_trait_v2)The type of the value produced by ? when not short-circuiting.
type Residual = ControlFlow<B, Infallible>
type Residual = ControlFlow<B, Infallible>
try_trait_v2)The type of the value passed to FromResidual::from_residual
as part of ? when short-circuiting. Read more
try_trait_v2)Constructs the type from its Output type. Read more
pub fn branch(
self
) -> ControlFlow<<ControlFlow<B, C> as Try>::Residual, <ControlFlow<B, C> as Try>::Output>
pub fn branch(
self
) -> ControlFlow<<ControlFlow<B, C> as Try>::Residual, <ControlFlow<B, C> as Try>::Output>
try_trait_v2)Used in ? to decide whether the operator should produce a value
(because this returned ControlFlow::Continue)
or propagate a value back to the caller
(because this returned ControlFlow::Break). Read more
Auto Trait Implementations
impl<B, C> RefUnwindSafe for ControlFlow<B, C> where
B: RefUnwindSafe,
C: RefUnwindSafe,
impl<B, C> Send for ControlFlow<B, C> where
B: Send,
C: Send,
impl<B, C> Sync for ControlFlow<B, C> where
B: Sync,
C: Sync,
impl<B, C> Unpin for ControlFlow<B, C> where
B: Unpin,
C: Unpin,
impl<B, C> UnwindSafe for ControlFlow<B, C> where
B: UnwindSafe,
C: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
Causes self to use its Binary implementation when Debug-formatted.
Causes self to use its Display implementation when
Debug-formatted. Read more
Causes self to use its LowerExp implementation when
Debug-formatted. Read more
Causes self to use its LowerHex implementation when
Debug-formatted. Read more
Causes self to use its Octal implementation when Debug-formatted.
Causes self to use its Pointer implementation when
Debug-formatted. Read more
Causes self to use its UpperExp implementation when
Debug-formatted. Read more
Causes self to use its UpperHex implementation when
Debug-formatted. Read more
Pipes by value. This is generally the method you want to use. Read more
Borrows self and passes that borrow into the pipe function. Read more
Mutably borrows self and passes that borrow into the pipe function. Read more
Borrows self, then passes self.borrow() into the pipe function. Read more
Mutably borrows self, then passes self.borrow_mut() into the pipe
function. Read more
Borrows self, then passes self.as_ref() into the pipe function.
Mutably borrows self, then passes self.as_mut() into the pipe
function. Read more
Borrows self, then passes self.deref() into the pipe function.
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
Pipes a dereference into a function that cannot normally be called in suffix position. Read more
Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more
Immutable access to the Borrow<B> of a value. Read more
Mutable access to the BorrowMut<B> of a value. Read more
Immutable access to the AsRef<R> view of a value. Read more
Mutable access to the AsMut<R> view of a value. Read more
Immutable access to the Deref::Target of a value. Read more
Mutable access to the Deref::Target of a value. Read more
Calls .tap() only in debug builds, and is erased in release builds.
Calls .tap_mut() only in debug builds, and is erased in release
builds. Read more
Calls .tap_borrow() only in debug builds, and is erased in release
builds. Read more
Calls .tap_borrow_mut() only in debug builds, and is erased in release
builds. Read more
Calls .tap_ref() only in debug builds, and is erased in release
builds. Read more
Calls .tap_ref_mut() only in debug builds, and is erased in release
builds. Read more
Calls .tap_deref() only in debug builds, and is erased in release
builds. Read more
Provides immutable access to the reference for inspection.
Calls tap_ref in debug builds, and does nothing in release builds.
Provides mutable access to the reference for modification.
Calls tap_ref_mut in debug builds, and does nothing in release builds.
Provides immutable access to the borrow for inspection. Read more
Calls tap_borrow in debug builds, and does nothing in release builds.
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
Provides mutable access to the borrow for modification.
Immutably dereferences self for inspection.
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
Calls tap_deref in debug builds, and does nothing in release builds.
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
Mutably dereferences self for modification.