1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
/*! Object Tapping

This crate provides traits for transparently inserting operations into a method
chain. All traits take and return the object on which they act by value, and run
a provided function on a borrow of the value.

This allows methods that do not chain (such as mutators with `&mut self -> ()`
signatures) to be chained.

The traits in this crate provide methods that run some function, `Fn(&T)` or
`Fn(&mut T)`, on a value `T` without changing the binding status of that value.

# Value Tapping

The primary trait of this crate is [`Tap`], which provides two methods: [`tap`]
and [`tap_mut`]. These provide immutable or mutable, respectively, borrows of
the tapped value to a user-provided function. The user function must not have a
return value.

This permits using inspector-style (`Fn(&Self)`) or mutator-style
(`Fn(&mut Self)`) functions in a method chain without breaks or reduction of
access to the main value.

Tap methods never change the type of the object on which they are called. The
`mut`-suffixed methods *are* permitted to change the *value* of their object.

# Trait Tapping

Rust does not have subtyping in the object-oriented sense; rather, it uses
traits to indicate relationships between types and bring behavior of an interior
type to the exterior type. This crate provides taps that use the standard
conversion traits in order to assist in running tap methods generically.

## Borrowed Tapping

The traits `std::borrow::Borrow` and `std::borrow::BorrowMut` allow container
types to behave as their contained types in borrowed contexts. The [`TapBorrow`]
trait provides methods, [`tap_borrow`] and [`tap_borrow_mut`], which depend on
`Borrow` and `BorrowMut`, respectively, to run the user-provided function on the
borrowed interior type.

This is useful for inspecting the interior of a `Cow` or other data structures
that abstract away the exact container type but provide uniform access to the
underlying data.

## Polymorphic Tapping

The traits `std::convert::AsRef` and `std::convert::AsMut` allow composed types
to be used by reference as their component types. The [`TapAsRef`] trait
provides methods, [`tap_ref`] and [`tap_ref_mut`], which depend on `AsRef` and
`AsMut`, respectively, to run the user-provided function on the referred
component type.

This is useful for working with types like `Path`, which are commonly used as
generic targets such as `<P: AsRef<Path>>`. All such types `P` may have
`.tap_ref` called upon them with methods implemented on `Path`.

> Note: `Borrow` and `AsRef` are generic traits, which a type can implement many
> times with different targets. As such, the referent type must be specified in
> the tapped function. This can be done with a named method, or by marking the
> type of the closure argument: `|x: &Referent| ...`.

## Dereferenced Tapping

The traits `std::ops::Deref` and `std::ops::DerefMut` may be used to make owning
containers transparently defer to their contained data. This is used by `Vec`
and `String`, for example, to behave like `[T]` and `str` implicitly.

The [`TapDeref`] trait provides [`tap_deref`] and [`tap_deref_mut`] which call
`Deref` or `DerefMut`, respectively, on the tapped value before running the
provided function on the produced `Deref::Target` value.

Since `Deref` may only be implemented once, this trait does not require any
extra type information in its tap calls.

# Conditional Tapping

Additional traits are provided to only invoke the tap when certain conditions
are met in the value being tapped.

## Boolean Tapping

The [`TapBool`] trait, with methods [`tap_true`], [`tap_false`], and their
associated `_mut` variants, run the provided function only when the value is of
the correct variant. This trait is implemented on `bool` by default, and is
left open so that user crates may implement it on their own `bool`-like types.

## Optional Tapping

The [`TapOption`] trait, with methods [`tap_some`], [`tap_some_mut`], and
[`tap_none`], run the provided function only when the `Option` is of the
matching variant. The `tap_some` methods pass `&T` or `&mut T` to their
function; `tap_none` passes nothing.

Note that `tap_some_mut` may change the value of the inner object, but it cannot
change the `Option` from `Some` to `None`. If this behavior is desired, use
`tap_mut` to modify the `Option` wrapper directly, rather than `tap_some_mut` to
change the interior value.

## Result Tapping

This acts exactly like `TapOption`, except that the alternate case has a value
that may be modified. It thus has methods [`tap_ok`], [`tap_err`], and the
associated `_mut` variants.

## Debug Tapping

All methods in the crate have a sibling method with the exact same name and
signature, except that the name is suffixed with `_dbg`. This method runs the
normal tap in a debug build, and is removed in release builds.

```rust
# macro_rules! debug {
#   ( $( $t:tt )* ) => { eprintln!( $( $t )* ) };
# }
use wyz::tap::TapOption;

Some(5i32).tap_some_dbg(|n| debug!("{}", n));
```

This emits a debug trace when the crate is built in debug mode, and does nothing
when the crate is built in release mode.

# Usage

Import the trait or traits you wish to use, with `use wyz::tap::Tap;`, and then
attach `.tap` methods on the end of any expression you want to inspect or
modify. These methods never change the type or binding status of the object to
which they are attached, and can be added or removed without affecting
neighboring code.

# Examples

This uses `tap_mut` to modify a vector using methods that cannot be chained, and
without converting to an iterator and re-collecting.

```rust
use wyz::tap::Tap;

let v = vec![5, 1, 2, 4, 3]
  .tap_mut(|v| v.sort())
  .tap_mut(|v| v.iter_mut().for_each(|e| *e *= 2))
  .tap_mut(|v| v.reverse());
assert_eq!(&v, &[10, 8, 6, 4, 2]);
```

This uses `tap_some` to implement a conditional flag.

```rust
use wyz::tap::TapOption;

let mut flag = false;

let n = None::<i32>.tap_some(|_| flag = true);
assert!(n.is_none());
assert!(!flag);

let n: Option<i32> = Some(1).tap_some(|_| flag = true);
assert_eq!(n.unwrap(), 1);
assert!(flag);
```

And this uses `tap_err` to log errors without suppressing them.

```rust
# use std::fmt::Display;
use wyz::tap::TapResult;

let mut err_ct = 0;

{
 let mut action = |e: &&str| {
  err_ct += 1;
  eprintln!("ERROR: {}", e);
 };

 Ok::<_, &str>("success").tap_err(&mut action);
 Err::<(), _>("failure").tap_err(&mut action);
} // I didn't want to write the closure twice

assert_eq!(err_ct, 1);
//  printed "ERROR: failure"
```

[`Tap`]: trait.Tap.html
[`TapAsRef`]: trait.TapAsRef.html
[`TapBorrow`]: trait.TapBorrow.html
[`TapDeref`]: trait.TapDeref.html
[`TapOption`]: trait.TapOption.html
[`TapResult`]: trait.TapResult.html
[`tap`]: trait.Tap.html#method.tap
[`tap_borrow`]: trait.TapBorrow.html#method.tap_borrow
[`tap_borrow_mut`]: trait.TapBorrow.html#method.tap_borrow_mut
[`tap_deref`]: trait.TapDeref.html#method.tap_deref
[`tap_deref_mut`]: trait.TapDeref.html#method.tap_deref_mut
[`tap_err`]: trait.TapResult.html#method.tap_err
[`tap_mut`]: trait.Tap.html#method.tap_mut
[`tap_none`]: trait.TapOption.html#method.tap_none
[`tap_ok`]: trait.TapResult.html#method.tap_ok
[`tap_ref`]: trait.TapAsRef.html#method.tap_ref
[`tap_ref_mut`]: trait.TapAsRef.html#method.tap_ref_mut
[`tap_some`]: trait.TapOption.html#method.tap_some
[`tap_some_mut`]: trait.TapOption.html#method.tap_some_mut
!*/

use core::{
	borrow::{
		Borrow,
		BorrowMut,
	},
	ops::{
		Deref,
		DerefMut,
	},
};

/** Value Tap

This trait allows any function that takes a borrowed value to be run on a value
directly, without downgrading the binding.

# Examples

Sorting a vector is a quintessential example of operations that break the flow
of handling a value. It cannot be done in the middle of an operation, because it
has the signature `&mut self -> ()`.

```rust
use wyz::tap::Tap;

let v = vec![5, 1, 4, 2, 3]
  .tap_mut(|v| v.sort())
  .tap_mut(|v| v.reverse())
  .tap_mut(|v| v.iter_mut().for_each(|elt| *elt *= 2));
assert_eq!(&v, &[10, 8, 6, 4, 2]);
```

Note that because `sort` and `reverse` are actually methods on `[T: Ord]`, not
on `Vec<T: Ord>`, they cannot be listed by name in the `tap_mut` call. Their
signature is `&mut [T: Ord] -> ()`, but `tap_mut` provides a `&mut Vec<T: Ord>`,
and deref-coercion does not apply to named functions. The [`TapDeref`] trait
allows this to work.

[`TapDeref`]: trait.TapDeref.html
**/
pub trait Tap: Sized {
	/// Provides immutable access for inspection.
	///
	/// This is most useful for inserting passive inspection points into an
	/// expression, such as for logging or counting.
	///
	/// # Examples
	///
	/// This demonstrates the use of `tap` to inspect a value and log it as it
	/// is transformed.
	///
	/// ```rust
	/// use wyz::tap::Tap;
	///
	/// fn make_value() -> i32 { 5 }
	/// fn alter_value(n: i32) -> i32 { n * 3 }
	///
	/// let mut init_flag = false;
	/// let mut fini_flag = false;
	/// let finished = make_value()
	///   .tap(|n| init_flag = *n == 5)
	///   .tap_mut(|n| *n = alter_value(*n))
	///   .tap(|n| fini_flag = *n == 15);
	///
	/// assert!(init_flag);
	/// assert!(fini_flag);
	/// assert_eq!(finished, 15);
	/// ```
	///
	/// This example is somewhat contrived, since `tap` is most useful for
	/// logging values with `eprintln!` or the `log` crate and those are hard to
	/// nicely demonstrate in tests.
	fn tap<F, R>(self, func: F) -> Self
	where
		F: FnOnce(&Self) -> R,
		R: Sized,
	{
		func(&self);
		self
	}

	/// Calls `tap` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_dbg<F, R>(self, func: F) -> Self
	where
		F: FnOnce(&Self) -> R,
		R: Sized,
	{
		#[cfg(debug_assertions)]
		return self.tap(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides mutable access for modification.
	///
	/// This is most useful for transforming mutator methods of the kind
	/// `&mut self -> ()` and making them fit in value chains of `self -> Self`.
	///
	/// # Examples
	///
	/// Append to a string without a `let mut` statement.
	///
	/// ```rust
	/// use wyz::tap::Tap;
	/// let full: String = "Hello".to_owned()
	///   .tap_mut(|s| s.push_str(", reader!"));
	/// assert_eq!(full, "Hello, reader!");
	/// ```
	fn tap_mut<F, R>(mut self, func: F) -> Self
	where
		F: FnOnce(&mut Self) -> R,
		R: Sized,
	{
		func(&mut self);
		self
	}

	/// Calls `tap_mut` in debug builds, and does nothing in release builds.
	#[allow(unused_mut, unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_mut_dbg<F, R>(self, func: F) -> Self
	where
		F: FnOnce(&mut Self) -> R,
		R: Sized,
	{
		#[cfg(debug_assertions)]
		return self.tap_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T: Sized> Tap for T {
}

/** Borrowing Tap

This trait runs the [`Borrow`] or [`BorrowMut`] trait on the caller, and passes
the borrowed output of it to the action. This permits passing methods defined on
a supertype to the tap of a subtype.

Because a type may implement `Borrow` multiple times, the function passed to
`.tap_borrow` must specify its argument type. This can be done by providing the
name of an explicitly typed function, or by typing a closure’s argument.

# Examples

```rust
use wyz::tap::{Tap, TapBorrow};
let v = vec![5, 1, 4, 2, 3]
  .tap_borrow_mut(<[i32]>::sort)
  .tap_mut(|v| v.reverse());
assert_eq!(&v, &[5, 4, 3, 2, 1]);
```

`tap_mut` on a `Vec<T>` cannot call functions defined in `impl [T]`;
`tap_borrow_mut` can, because `Vec<T>` implements `Borrow<[T]>`.

[`Borrow`]: https://doc.rust-lang.org/stable/core/borrow/trait.Borrow.html
[`BorrowMut`]: https://doc.rust-lang.org/stable/core/borrow/trait.BorrowMut.html
**/
pub trait TapBorrow<T: ?Sized>: Sized {
	/// Provides immutable access to the borrow for inspection.
	///
	/// This calls `<Self as Borrow<T>>::borrow` on `self`, and calls `func` on
	/// the resulting borrow.
	///
	/// # Examples
	///
	/// ```rust
	/// use std::rc::Rc;
	/// use wyz::tap::TapBorrow;
	///
	/// let mut len = 0;
	/// let text = Rc::<str>::from("hello")
	///   .tap_borrow(|s: &str| len = s.len());
	/// ```
	fn tap_borrow<F, R>(self, func: F) -> Self
	where
		Self: Borrow<T>,
		F: FnOnce(&T) -> R,
		R: Sized,
	{
		func(Borrow::<T>::borrow(&self));
		self
	}

	/// Calls `tap_borrow` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_borrow_dbg<F, R>(self, func: F) -> Self
	where
		Self: Borrow<T>,
		F: FnOnce(&T) -> R,
		R: Sized,
	{
		#[cfg(debug_assertions)]
		return self.tap_borrow(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides mutable access to the borrow for modification.
	fn tap_borrow_mut<F, R>(mut self, func: F) -> Self
	where
		Self: BorrowMut<T>,
		F: FnOnce(&mut T) -> R,
		R: Sized,
	{
		func(BorrowMut::<T>::borrow_mut(&mut self));
		self
	}

	/// Calls `tap_borrow_mut` in debug builds, and does nothing in release
	/// builds.
	#[allow(unused_mut, unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_borrow_mut_dbg<F, R>(self, func: F) -> Self
	where
		Self: BorrowMut<T>,
		F: FnOnce(&mut T) -> R,
		R: Sized,
	{
		#[cfg(debug_assertions)]
		return self.tap_borrow_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T: Sized, U: ?Sized> TapBorrow<U> for T {
}

/** Referential Tap

This trait runs the [`AsRef`] or [`AsMut`] trait on the caller, and passes the
referred output of it to the action. This permits passing methods defined on a
member value’s type to the tap of an aggregate value.

Due to restrictions in the Rust type system, using these taps on types which
have multiple implementations of `AsRef` or `AsMut` must specify which
implementation is desired by setting the type of the receiver of the called
function.

# Examples

```rust
use wyz::tap::{Tap, TapAsRef};
let v = vec![5, 1, 4, 2, 3]
  .tap_ref_mut(<[i32]>::sort)
  .tap_mut(|v| v.reverse());
assert_eq!(&v, &[5, 4, 3, 2, 1]);
```

This example demonstrates disambiguating among multiple implementations.

```rust
use wyz::tap::TapAsRef;

struct Example {
 a: [u8; 8],
 b: [u16; 4],
}
impl AsRef<[u8]> for Example {
 fn as_ref(&self) -> &[u8] {
  &self.a
 }
}
impl AsRef<[u16]> for Example {
 fn as_ref(&self) -> &[u16] {
  &self.b
 }
}
impl AsMut<[u8]> for Example {
 fn as_mut(&mut self) -> &mut [u8] {
  &mut self.a
 }
}
impl AsMut<[u16]> for Example {
 fn as_mut(&mut self) -> &mut [u16] {
  &mut self.b
 }
}

let mut sum = 0usize;
let e = Example {
 a: [0, 1, 2, 3, 4, 5, 6, 7],
 b: [8, 9, 10, 11],
}
 .tap_ref(|a: &[u8]| sum += a.iter().sum::<u8>() as usize)
 .tap_ref(|b: &[u16]| sum += b.iter().sum::<u16>() as usize)
 .tap_ref_mut(|a: &mut [u8]| a.iter_mut().for_each(|e| *e *= 2))
 .tap_ref_mut(|b: &mut [u16]| b.iter_mut().for_each(|e| *e *= 2));

assert_eq!(sum, 66);
assert_eq!(e.a, [0, 2, 4, 6, 8, 10, 12, 14]);
assert_eq!(e.b, [16, 18, 20, 22]);
```

[`AsMut`]: https://doc.rust-lang.org/stable/core/convert/trait.AsMut.html
[`AsRef`]: https://doc.rust-lang.org/stable/core/convert/trait.AsRef.html
**/
pub trait TapAsRef<T: ?Sized>: Sized {
	/// Provides immutable access to the reference for inspection.
	fn tap_ref<F, R>(self, func: F) -> Self
	where
		Self: AsRef<T>,
		F: FnOnce(&T) -> R,
	{
		func(AsRef::<T>::as_ref(&self));
		self
	}

	/// Calls `tap_ref` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_ref_dbg<F, R>(self, func: F) -> Self
	where
		Self: AsRef<T>,
		F: FnOnce(&T) -> R,
	{
		#[cfg(debug_assertions)]
		return self.tap_ref(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides mutable access to the reference for modification.
	fn tap_ref_mut<F, R>(mut self, func: F) -> Self
	where
		Self: AsMut<T>,
		F: FnOnce(&mut T) -> R,
	{
		func(AsMut::<T>::as_mut(&mut self));
		self
	}

	/// Calls `tap_ref_mut` in debug builds, and does nothing in release builds.
	#[allow(unused_mut, unused_variables)]
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_ref_mut_dbg<F, R>(mut self, func: F) -> Self
	where
		Self: AsMut<T>,
		F: FnOnce(&mut T) -> R,
	{
		#[cfg(debug_assertions)]
		return self.tap_ref_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T: Sized, U: ?Sized> TapAsRef<U> for T {
}

/** Dereferencing Tap

This trait runs the [`Deref`] or [`DerefMut`] trait on the caller, and passes
the reborrowed dereference of it to the action. This permits passing methods
defined on the supertype to the tap of a subtype *by name*, rather than by using
closure syntax.

Note that the implementation of this trait does not require that the implementor
also implement `Deref` or `DerefMut`, but the trait methods will cause compiler
failures at the call site if the `Deref` or `DerefMut` traits are not present.

# Examples

```rust
use wyz::tap::{Tap, TapDeref};
let v = vec![5, 1, 4, 2, 3]
  .tap_deref_mut(<[i32]>::sort)
  .tap_mut(|v| v.reverse());
assert_eq!(&v, &[5, 4, 3, 2, 1]);
```

[`Deref`]: https://doc.rust-lang.org/stable/core/ops/trait.Deref.html
[`DerefMut`]: https://doc.rust-lang.org/stable/core/ops/trait.DerefMut.html
**/
pub trait TapDeref: Sized {
	/// Immutably dereferences `self` for inspection.
	fn tap_deref<F, R>(self, func: F) -> Self
	where
		Self: Deref,
		F: FnOnce(&<Self as Deref>::Target) -> R,
	{
		func(Deref::deref(&self));
		self
	}

	/// Calls `tap_deref` in debug builds, and does nothing in release builds.
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_deref_dbg<F, R>(self, func: F) -> Self
	where
		Self: Deref,
		F: FnOnce(&<Self as Deref>::Target) -> R,
	{
		#[cfg(debug_assertions)]
		return self.tap_deref(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Mutably dereferences `self` for modification.
	fn tap_deref_mut<F, R>(mut self, func: F) -> Self
	where
		Self: DerefMut,
		F: FnOnce(&mut <Self as Deref>::Target) -> R,
	{
		func(DerefMut::deref_mut(&mut self));
		self
	}

	/// Calls `tap_deref_mut` in debug builds, and does nothing in release
	/// builds.
	#[cfg_attr(not(debug_assertions), allow(unused_variables))]
	fn tap_deref_mut_dbg<F, R>(self, func: F) -> Self
	where
		Self: DerefMut,
		F: FnOnce(&mut <Self as Deref>::Target) -> R,
	{
		#[cfg(debug_assertions)]
		return self.tap_deref_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T: Sized> TapDeref for T {
}

/** Optional Tap

This trait allows conditional tapping of `Option` wrappers. The methods only
invoke their provided function, on the inner type, if the `Option` has the
correct outer variant.
**/
pub trait TapOption<T: Sized>: Sized {
	/// Provides the interior value for inspection if present.
	///
	/// This is equivalent to `.map(|v| { func(&v); v })`.
	fn tap_some<F: FnOnce(&T) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_some` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_some_dbg<F: FnOnce(&T) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_some(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides the interior value for modification if present.
	///
	/// This is equivalent to `.map(|mut v| { func(&mut v); v })`.
	fn tap_some_mut<F: FnOnce(&mut T) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_some_mut` in debug builds, and does nothing in release
	/// builds.
	#[allow(unused_variables)]
	fn tap_some_mut_dbg<F: FnOnce(&mut T) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_some_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Runs the provided function if the `Option` is empty.
	///
	/// This is equivalent to `.or_else(|| { func(); None })`.
	fn tap_none<F: FnOnce() -> R, R>(self, func: F) -> Self;

	/// Calls `tap_none` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_none_dbg<F: FnOnce() -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_none(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T> TapOption<T> for Option<T> {
	fn tap_some<F: FnOnce(&T) -> R, R>(self, func: F) -> Self {
		if let Some(val) = self.as_ref() {
			func(val);
		}
		self
	}

	fn tap_some_mut<F: FnOnce(&mut T) -> R, R>(mut self, func: F) -> Self {
		if let Some(val) = self.as_mut() {
			func(val);
		}
		self
	}

	fn tap_none<F: FnOnce() -> R, R>(self, func: F) -> Self {
		if self.is_none() {
			func();
		}
		self
	}
}

/** Result Tap

This trait allows conditional tapping of `Result` wrappers. The methods only
invoke their provided function, on the inner type, if the `Result` has the
correct outer variant.

Note that the result value of whichever function you pass to the tapper is
discarded, so if that function returns a `Result`, an “unused must use” warning
will be raised! You must explicitly handle or drop a `Result` value if
your tapper’s function produces one.
**/
pub trait TapResult<T: Sized, E: Sized>: Sized {
	/// Provides the inner value for inspection if the `Result` is `Ok`.
	fn tap_ok<F: FnOnce(&T) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_ok` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_ok_dbg<F: FnOnce(&T) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_ok(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides the inner value for modification if the `Result` is `Ok`.
	fn tap_ok_mut<F: FnOnce(&mut T) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_ok_mut` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_ok_mut_dbg<F: FnOnce(&mut T) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_ok_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides the inner error value for inspection if the `Result` is `Err`.
	fn tap_err<F: FnOnce(&E) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_err` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_err_dbg<F: FnOnce(&E) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_err(func);
		#[cfg(not(debug_assertions))]
		return self;
	}

	/// Provides the inner error value for modification if the `Result` is
	/// `Err`.
	fn tap_err_mut<F: FnOnce(&mut E) -> R, R>(self, func: F) -> Self;

	/// Calls `tap_err_mut` in debug builds, and does nothing in release builds.
	#[allow(unused_variables)]
	fn tap_err_mut_dbg<F: FnOnce(&mut E) -> R, R>(self, func: F) -> Self {
		#[cfg(debug_assertions)]
		return self.tap_err_mut(func);
		#[cfg(not(debug_assertions))]
		return self;
	}
}

impl<T, E> TapResult<T, E> for Result<T, E> {
	fn tap_ok<F: FnOnce(&T) -> R, R>(self, func: F) -> Self {
		if let Ok(val) = self.as_ref() {
			func(val);
		}
		self
	}

	fn tap_ok_mut<F: FnOnce(&mut T) -> R, R>(mut self, func: F) -> Self {
		if let Ok(val) = self.as_mut() {
			func(val);
		}
		self
	}

	fn tap_err<F: FnOnce(&E) -> R, R>(self, func: F) -> Self {
		if let Err(err) = self.as_ref() {
			func(err);
		}
		self
	}

	fn tap_err_mut<F: FnOnce(&mut E) -> R, R>(mut self, func: F) -> Self {
		if let Err(err) = self.as_mut() {
			func(err);
		}
		self
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn tap() {
		let mut trap = 0;
		assert_eq!(5.tap(|n| trap += *n), 5);
		assert_eq!(5.tap_mut(|n| *n += trap), 10);
	}

	#[cfg(feature = "alloc")]
	#[test]
	fn tap_borrow() {
		use alloc::rc::Rc;

		let mut len = 0;
		let _ = Rc::<str>::from("hello").tap_borrow(|s: &str| len = s.len());
		assert_eq!(len, 5);

		let v = alloc::vec![5i32, 1, 2, 4, 3]
			.tap_borrow_mut(<[i32]>::sort)
			.tap_borrow_mut(<[i32]>::reverse);
		assert_eq!(v, &[5, 4, 3, 2, 1])
	}

	#[test]
	fn tap_as_ref() {
		struct Example {
			a: [u8; 8],
			b: [u16; 4],
		}
		impl AsRef<[u8]> for Example {
			fn as_ref(&self) -> &[u8] {
				&self.a
			}
		}
		impl AsRef<[u16]> for Example {
			fn as_ref(&self) -> &[u16] {
				&self.b
			}
		}
		impl AsMut<[u8]> for Example {
			fn as_mut(&mut self) -> &mut [u8] {
				&mut self.a
			}
		}
		impl AsMut<[u16]> for Example {
			fn as_mut(&mut self) -> &mut [u16] {
				&mut self.b
			}
		}

		let mut sum_a = 0;
		let mut sum_b = 0;
		let e = Example {
			a: [0, 1, 2, 3, 4, 5, 6, 7],
			b: [8, 9, 10, 11],
		}
		.tap_ref(|a: &[u8]| sum_a = a.iter().sum())
		.tap_ref(|b: &[u16]| sum_b = b.iter().sum())
		.tap_ref_mut(|a: &mut [u8]| a.iter_mut().for_each(|e| *e *= 2))
		.tap_ref_mut(|b: &mut [u16]| b.iter_mut().for_each(|e| *e *= 2));

		assert_eq!(sum_a, 28);
		assert_eq!(sum_b, 38);
		assert_eq!(e.a, [0, 2, 4, 6, 8, 10, 12, 14]);
		assert_eq!(e.b, [16, 18, 20, 22]);
	}

	#[cfg(feature = "alloc")]
	#[test]
	fn tap_deref() {
		let mut len = 0;
		let v = alloc::vec![5, 1, 4, 2, 3]
			.tap_deref(|s| len = s.len())
			.tap_deref_mut(<[i32]>::sort);
		assert_eq!(len, 5);
		assert_eq!(v, [1, 2, 3, 4, 5]);
	}

	#[test]
	fn tap_option() {
		let mut trap = 0;

		None.tap_some(|x: &i32| trap += *x);
		assert_eq!(trap, 0);

		Some(5).tap_some(|x| trap += *x);
		assert_eq!(trap, 5);

		assert_eq!(Some(5).tap_some_mut(|x| *x += 5).unwrap(), 10);

		assert!(Some(5).tap_mut(Option::take).is_none());
	}

	#[test]
	fn tap_result() {
		let mut trap = 0;

		assert_eq!(Err(5).tap_ok(|x: &i32| trap += *x).unwrap_err(), 5);
		assert_eq!(trap, 0);
		assert_eq!(Err(5).tap_ok_mut(|x: &mut i32| *x += 5).unwrap_err(), 5);

		assert_eq!(Ok::<_, i32>(5).tap_ok(|x: &i32| trap += *x).unwrap(), 5);
		assert_eq!(trap, 5);
		assert_eq!(Ok::<_, i32>(5).tap_ok_mut(|x| *x += 5).unwrap(), 10);
	}
}