Trait scale_info::prelude::fmt::UpperHex

1.0.0 · source · []
pub trait UpperHex {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}
Expand description

X formatting.

The UpperHex trait should format its output as a number in hexadecimal, with A through F in upper case.

For primitive signed integers (i8 to i128, and isize), negative values are formatted as the two’s complement representation.

The alternate flag, #, adds a 0x in front of the output.

For more information on formatters, see the module-level documentation.

Examples

Basic usage with i32:

let x = 42; // 42 is '2A' in hex

assert_eq!(format!("{:X}", x), "2A");
assert_eq!(format!("{:#X}", x), "0x2A");

assert_eq!(format!("{:X}", -16), "FFFFFFF0");

Implementing UpperHex on a type:

use std::fmt;

struct Length(i32);

impl fmt::UpperHex for Length {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let val = self.0;

        fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
    }
}

let l = Length(i32::MAX);

assert_eq!(format!("l as hex is: {:X}", l), "l as hex is: 7FFFFFFF");

assert_eq!(format!("l as hex is: {:#010X}", l), "l as hex is: 0x7FFFFFFF");

Required methods

Formats the value using the given formatter.

Implementations on Foreign Types

Render the contents of a BitSlice in a numeric format.

These implementations render the bits of memory contained in a BitSlice as one of the three numeric bases that the Rust format system supports:

  • Binary renders each bit individually as 0 or 1,
  • Octal renders clusters of three bits as the numbers 0 through 7,
  • and UpperHex and LowerHex render clusters of four bits as the numbers 0 through 9 and A through F.

The formatters produce a “word” for each element T of memory. The chunked formats (octal and hexadecimal) operate somewhat peculiarly: they show the semantic value of the memory, as interpreted by the ordering parameter’s implementation rather than the raw value of memory you might observe with a debugger. In order to ease the process of expanding numbers back into bits, each digit is grouped to the right edge of the memory element. So, for example, the byte 0xFF would be rendered in as 0o377 rather than 0o773.

Rendered words are chunked by memory elements, rather than by as clean as possible a number of digits, in order to aid visualization of the slice’s place in memory.

Implementors

impl UpperHex for Seed

impl<O, V> UpperHex for BitArray<O, V> where
    O: BitOrder,
    V: BitView

impl<T> UpperHex for Domain<'_, T> where
    T: BitStore

impl<O, T> UpperHex for BitSlice<O, T> where
    O: BitOrder,
    T: BitStore

impl<O, T> UpperHex for BitBox<O, T> where
    O: BitOrder,
    T: BitStore

impl<O, T> UpperHex for BitVec<O, T> where
    O: BitOrder,
    T: BitStore

impl<T: ArrayLength<u8>> UpperHex for GenericArray<u8, T> where
    T: Add<T>,
    <T as Add<T>>::Output: ArrayLength<u8>, 

impl<T, R: Dim, C: Dim, S> UpperHex for Matrix<T, R, C, S> where
    T: Scalar + UpperHex,
    S: Storage<T, R, C>,
    DefaultAllocator: Allocator<usize, R, C>, 

impl<T> UpperHex for Complex<T> where
    T: UpperHex + Num + PartialOrd + Clone

impl<T: UpperHex + Clone + Integer> UpperHex for Ratio<T>

impl UpperHex for H128

impl UpperHex for H160

impl UpperHex for H256

impl UpperHex for H512

impl<A: Array> UpperHex for ArrayVec<A> where
    A::Item: UpperHex

impl<'s, T> UpperHex for SliceVec<'s, T> where
    T: UpperHex

impl<A: Array> UpperHex for TinyVec<A> where
    A::Item: UpperHex

impl<T: Binary + UpperHex> UpperHex for FmtBinary<T>

impl<T: Display + UpperHex> UpperHex for FmtDisplay<T>

impl<T: Octal + UpperHex> UpperHex for FmtOctal<T>

impl<T: Pointer + UpperHex> UpperHex for FmtPointer<T>

impl<T: UpperHex> UpperHex for FmtUpperHex<T>