#[repr(C)]pub struct Isometry<T: Scalar, R, const D: usize> {
pub rotation: R,
pub translation: Translation<T, D>,
}
Expand description
A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
This is also known as an element of a Special Euclidean (SE) group.
The Isometry
type can either represent a 2D or 3D isometry.
A 2D isometry is composed of:
- A translation part of type
Translation2
- A rotation part which can either be a
UnitComplex
or aRotation2
. A 3D isometry is composed of: - A translation part of type
Translation3
- A rotation part which can either be a
UnitQuaternion
or aRotation3
.
Note that instead of using the Isometry
type in your code directly, you should use one
of its aliases: Isometry2
, Isometry3
,
IsometryMatrix2
, IsometryMatrix3
. Though
keep in mind that all the documentation of all the methods of these aliases will also appears on
this page.
Construction
- From a 2D vector and/or an angle
new
,translation
,rotation
… - From a 3D vector and/or an axis-angle
new
,translation
,rotation
… - From a 3D eye position and target point
look_at
,look_at_lh
,face_towards
… - From the translation and rotation parts
from_parts
…
Transformation and composition
Note that transforming vectors and points can be done by multiplication, e.g., isometry * point
.
Composing an isometry with another transformation can also be done by multiplication or division.
- Transformation of a vector or a point
transform_vector
,inverse_transform_point
… - Inversion and in-place composition
inverse
,append_rotation_wrt_point_mut
… - Interpolation
lerp_slerp
…
Conversion to a matrix
Fields
rotation: R
The pure rotational part of this isometry.
translation: Translation<T, D>
The pure translational part of this isometry.
Implementations
Creates a new isometry from its rotational and translational parts.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
let iso = Isometry3::from_parts(tra, rot);
assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
Inverts self
.
Example
let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let inv = iso.inverse();
let pt = Point2::new(1.0, 2.0);
assert_eq!(inv * (iso * pt), pt);
Inverts self
in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 2.0);
let transformed_pt = iso * pt;
iso.inverse_mut();
assert_eq!(iso * transformed_pt, pt);
Computes self.inverse() * rhs
in a more efficient way.
Example
let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
Appends to self
the given translation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let tra = Translation2::new(3.0, 4.0);
// Same as `iso = tra * iso`.
iso.append_translation_mut(&tra);
assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
Appends to self
the given rotation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
let rot = UnitComplex::new(f32::consts::PI / 2.0);
// Same as `iso = rot * iso`.
iso.append_rotation_mut(&rot);
assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 0.0);
iso.append_rotation_wrt_point_mut(&rot, &pt);
assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
iso.append_rotation_wrt_center_mut(&rot);
// The translation part should not have changed.
assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
Transform the given point by this isometry.
This is the same as the multiplication self * pt
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);
let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
Transform the given vector by this isometry, ignoring the translation component of the isometry.
This is the same as the multiplication self * v
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);
let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);
let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);
let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
Transform the given unit vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);
let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this isometry into its equivalent homogeneous transformation matrix.
This is the same as self.to_matrix()
.
Example
let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5, 10.0,
0.5, 0.8660254, 20.0,
0.0, 0.0, 1.0);
assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
pub fn to_matrix(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_matrix(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this isometry into its equivalent homogeneous transformation matrix.
This is the same as self.to_homogeneous()
.
Example
let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5, 10.0,
0.5, 0.8660254, 20.0,
0.0, 0.0, 1.0);
assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> where
T::Element: SimdRealField,
Creates a new identity isometry.
Example
let iso = Isometry2::identity();
let pt = Point2::new(1.0, 2.0);
assert_eq!(iso * pt, pt);
let iso = Isometry3::identity();
let pt = Point3::new(1.0, 2.0, 3.0);
assert_eq!(iso * pt, pt);
The isometry that applies the rotation r
with its axis passing through the point p
.
This effectively lets p
invariant.
Example
let rot = UnitComplex::new(f32::consts::PI);
let pt = Point2::new(1.0, 0.0);
let iso = Isometry2::rotation_wrt_point(rot, pt);
assert_eq!(iso * pt, pt); // The rotation center is not affected.
assert_relative_eq!(iso * Point2::new(1.0, 2.0), Point2::new(1.0, -2.0), epsilon = 1.0e-6);
impl<T: SimdRealField> Isometry<T, Rotation<T, 2_usize>, 2_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Rotation<T, 2_usize>, 2_usize> where
T::Element: SimdRealField,
Creates a new 2D isometry from a translation and a rotation angle.
Its rotational part is represented as a 2x2 rotation matrix.
Example
let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));
Creates a new isometry from the given translation coordinates.
pub fn cast<To: Scalar>(self) -> IsometryMatrix2<To> where
IsometryMatrix2<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> IsometryMatrix2<To> where
IsometryMatrix2<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let iso = IsometryMatrix2::<f64>::identity();
let iso2 = iso.cast::<f32>();
assert_eq!(iso2, IsometryMatrix2::<f32>::identity());
impl<T: SimdRealField> Isometry<T, Unit<Complex<T>>, 2_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Unit<Complex<T>>, 2_usize> where
T::Element: SimdRealField,
Creates a new 2D isometry from a translation and a rotation angle.
Its rotational part is represented as an unit complex number.
Example
let iso = IsometryMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));
Creates a new isometry from the given translation coordinates.
impl<T: SimdRealField> Isometry<T, Unit<Quaternion<T>>, 3_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Unit<Quaternion<T>>, 3_usize> where
T::Element: SimdRealField,
Creates a new isometry from a translation and a rotation axis-angle.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
Creates a new isometry from the given translation coordinates.
Creates a new isometry from the given rotation angle.
impl<T: SimdRealField> Isometry<T, Rotation<T, 3_usize>, 3_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Rotation<T, 3_usize>, 3_usize> where
T::Element: SimdRealField,
Creates a new isometry from a translation and a rotation axis-angle.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
Creates a new isometry from the given translation coordinates.
Creates a new isometry from the given rotation angle.
pub fn cast<To: Scalar>(self) -> IsometryMatrix3<To> where
IsometryMatrix3<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> IsometryMatrix3<To> where
IsometryMatrix3<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let iso = IsometryMatrix3::<f64>::identity();
let iso2 = iso.cast::<f32>();
assert_eq!(iso2, IsometryMatrix3::<f32>::identity());
impl<T: SimdRealField> Isometry<T, Unit<Quaternion<T>>, 3_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Unit<Quaternion<T>>, 3_usize> where
T::Element: SimdRealField,
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the z
axis to the view direction target - eye
and the origin to the eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());
👎 Deprecated: renamed to face_towards
renamed to face_towards
Deprecated: Use Isometry::face_towards instead.
Builds a right-handed look-at view matrix.
It maps the view direction target - eye
to the negative z
axis to and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local -z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
Builds a left-handed look-at view matrix.
It maps the view direction target - eye
to the positive z
axis and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());
impl<T: SimdRealField> Isometry<T, Rotation<T, 3_usize>, 3_usize> where
T::Element: SimdRealField,
impl<T: SimdRealField> Isometry<T, Rotation<T, 3_usize>, 3_usize> where
T::Element: SimdRealField,
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the z
axis to the view direction target - eye
and the origin to the eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());
👎 Deprecated: renamed to face_towards
renamed to face_towards
Deprecated: Use Isometry::face_towards instead.
Builds a right-handed look-at view matrix.
It maps the view direction target - eye
to the negative z
axis to and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local -z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
Builds a left-handed look-at view matrix.
It maps the view direction target - eye
to the positive z
axis and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());
// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = Isometry3::from_parts(t1, q1);
let iso2 = Isometry3::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self> where
T: RealField,
pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self> where
T: RealField,
Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Retuns None
if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined).
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = Isometry3::from_parts(t1, q1);
let iso2 = Isometry3::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = IsometryMatrix3::from_parts(t1, q1);
let iso2 = IsometryMatrix3::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self> where
T: RealField,
pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self> where
T: RealField,
Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Retuns None
if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined).
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0);
let t2 = Translation3::new(4.0, 8.0, 12.0);
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let iso1 = IsometryMatrix3::from_parts(t1, q1);
let iso2 = IsometryMatrix3::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation2::new(1.0, 2.0);
let t2 = Translation2::new(4.0, 8.0);
let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
let q2 = UnitComplex::new(-std::f32::consts::PI);
let iso1 = Isometry2::from_parts(t1, q1);
let iso2 = Isometry2::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation2::new(1.0, 2.0);
let t2 = Translation2::new(4.0, 8.0);
let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
let q2 = Rotation2::new(-std::f32::consts::PI);
let iso1 = IsometryMatrix2::from_parts(t1, q1);
let iso2 = IsometryMatrix2::from_parts(t2, q2);
let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
Trait Implementations
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<T: RealField, R, const D: usize> Distribution<Isometry<T, R, D>> for Standard where
R: AbstractRotation<T, D>,
Standard: Distribution<T> + Distribution<R>,
impl<T: RealField, R, const D: usize> Distribution<Isometry<T, R, D>> for Standard where
R: AbstractRotation<T, D>,
Standard: Distribution<T> + Distribution<R>,
Generate a random value of T
, using rng
as the source of randomness.
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<T: SimdRealField> Div<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the /=
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the /=
operation. Read more
impl<'b, T: SimdRealField> DivAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the /=
operation. Read more
impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the /=
operation. Read more
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the /=
operation. Read more
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the /=
operation. Read more
impl<T: SimdRealField> DivAssign<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<T> DivAssign<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> DivAssign<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the /=
operation. Read more
impl<T> DivAssign<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> DivAssign<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the /=
operation. Read more
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 16]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 16]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 16]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 16]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 2]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 2]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 2]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 2]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 4]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 4]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 4]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 4]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 8]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 8]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: Scalar + PrimitiveSimdValue, R, const D: usize> From<[Isometry<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Isometry<T, R, D> where
T: From<[<T as SimdValue>::Element; 8]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 8]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Copy,
R::Element: Scalar + Copy,
impl<T: SimdRealField, R, const D: usize> From<[T; D]> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> From<[T; D]> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> From<Isometry<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField, R, const D: usize> From<Isometry<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField> From<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField, R, const D: usize> From<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> From<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> From<Point<T, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> From<Point<T, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> From<Translation<T, D>> for Isometry<T, R, D>
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> From<Translation<T, D>> for Isometry<T, R, D>
Performs the conversion.
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Isometry<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Isometry<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Isometry<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitComplex<T>, 2>
type Output = Isometry<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T: SimdRealField, R, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Unit<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Isometry<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Isometry<T, UnitQuaternion<T>, 3>
type Output = Isometry<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<'b, T: SimdRealField> MulAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the *=
operation. Read more
impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the *=
operation. Read more
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<T: SimdRealField> MulAssign<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Isometry<T, Unit<Quaternion<T>>, 3_usize>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
Performs the *=
operation. Read more
impl<T> MulAssign<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> MulAssign<Unit<Complex<T>>> for Isometry<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the *=
operation. Read more
impl<T> MulAssign<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> MulAssign<Unit<Quaternion<T>>> for Isometry<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
Performs the *=
operation. Read more
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> One for Isometry<T, R, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> One for Isometry<T, R, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, R, const D: usize> PartialEq<Isometry<T, R, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D> + PartialEq,
impl<T: SimdRealField, R, const D: usize> PartialEq<Isometry<T, R, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D> + PartialEq,
impl<T: RealField, R, const D: usize> RelativeEq<Isometry<T, R, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
impl<T: RealField, R, const D: usize> RelativeEq<Isometry<T, R, D>> for Isometry<T, R, D> where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<T: SimdRealField, R, const D: usize> SimdValue for Isometry<T, R, D> where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
impl<T: SimdRealField, R, const D: usize> SimdValue for Isometry<T, R, D> where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
The type of the elements of each lane of this SIMD value.
Extracts the i-th lane of self
without bound-checking.
Replaces the i-th lane of self
by val
. Read more
Replaces the i-th lane of self
by val
without bound-checking.
Merges self
and other
depending on the lanes of cond
. Read more
Applies a function to each lane of self
. Read more
impl<T1, T2, R> SubsetOf<Isometry<T2, R, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 2> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Isometry<T2, R, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 2> + SupersetOf<Self>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R> SubsetOf<Isometry<T2, R, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Isometry<T2, R, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D> + SupersetOf<Self>,
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D> + SupersetOf<Self>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Isometry<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Isometry<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2> SubsetOf<Isometry<T2, Unit<Quaternion<T2>>, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Isometry<T2, Unit<Quaternion<T2>>, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
impl<T: Scalar + Copy, R: Copy, const D: usize> Copy for Isometry<T, R, D> where
Owned<T, Const<D>>: Copy,
impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
R: AbstractRotation<T, D> + Eq,
Auto Trait Implementations
impl<T, R, const D: usize> RefUnwindSafe for Isometry<T, R, D> where
R: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, R, const D: usize> UnwindSafe for Isometry<T, R, D> where
R: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.