#[repr(C)]pub struct Transform<T: RealField, C: TCategory, const D: usize> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, { /* private fields */ }
Expand description
A transformation matrix in homogeneous coordinates.
It is stored as a matrix with dimensions (D + 1, D + 1)
, e.g., it stores a 4x4 matrix for a
3D transformation.
Implementations
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn from_matrix_unchecked(
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
pub fn from_matrix_unchecked(
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Creates a new transformation from the given homogeneous matrix. The transformation category
of Self
is not checked to be verified by the given matrix.
Retrieves the underlying matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
👎 Deprecated: use .into_inner()
instead
use .into_inner()
instead
Retrieves the underlying matrix. Deprecated: Use Transform::into_inner instead.
A reference to the underlying matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(*t.matrix(), m);
pub fn matrix_mut_unchecked(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn matrix_mut_unchecked(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
A mutable reference to the underlying matrix.
It is _unchecked
because direct modifications of this matrix may break invariants
identified by this transformation category.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let mut t = Transform2::from_matrix_unchecked(m);
t.matrix_mut_unchecked().m12 = 42.0;
t.matrix_mut_unchecked().m23 = 90.0;
let expected = Matrix3::new(1.0, 42.0, 0.0,
3.0, 4.0, 90.0,
0.0, 0.0, 1.0);
assert_eq!(*t.matrix(), expected);
Sets the category of this transform.
This can be done only if the new category is more general than the current one, e.g., a
transform with category TProjective
cannot be converted to a transform with category
TAffine
because not all projective transformations are affine (the other way-round is
valid though).
👎 Deprecated: This method is redundant with automatic Copy
and the .clone()
method and will be removed in a future release.
This method is redundant with automatic Copy
and the .clone()
method and will be removed in a future release.
Clones this transform into one that owns its data.
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
Converts this transform into its equivalent homogeneous transformation matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
Attempts to invert this transformation. You may use .inverse
instead of this
transformation has a subcategory of TProjective
(i.e. if it is a Projective{2,3}
or Affine{2,3}
).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let inv_t = t.try_inverse().unwrap();
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());
// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
3.0, 0.0, 5.0,
0.0, 0.0, 0.0);
let t = Transform2::from_matrix_unchecked(m);
assert!(t.try_inverse().is_none());
Inverts this transformation. Use .try_inverse
if this transform has the TGeneral
category (i.e., a Transform{2,3}
may not be invertible).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let inv_t = proj.inverse();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
Attempts to invert this transformation in-place. You may use .inverse_mut
instead of this
transformation has a subcategory of TProjective
.
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let mut inv_t = t;
assert!(inv_t.try_inverse_mut());
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());
// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
3.0, 0.0, 5.0,
0.0, 0.0, 0.0);
let mut t = Transform2::from_matrix_unchecked(m);
assert!(!t.try_inverse_mut());
Inverts this transformation in-place. Use .try_inverse_mut
if this transform has the
TGeneral
category (it may not be invertible).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let mut inv_t = proj;
inv_t.inverse_mut();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
impl<T, C, const D: usize> Transform<T, C, D> where
T: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Transform<T, C, D> where
T: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
Transform the given point by this transformation.
This is the same as the multiplication self * pt
.
Transform the given vector by this transformation, ignoring the translational component of the transformation.
This is the same as the multiplication self * v
.
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
Transform the given point by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the point.
Transform the given vector by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the vector.
impl<T: RealField, const D: usize> Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, const D: usize> Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn matrix_mut(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn matrix_mut(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
A mutable reference to underlying matrix. Use .matrix_mut_unchecked
instead if this
transformation category is not TGeneral
.
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Creates a new identity transform.
Example
let pt = Point2::new(1.0, 2.0);
let t = Projective2::identity();
assert_eq!(t * pt, pt);
let aff = Affine2::identity();
assert_eq!(aff * pt, pt);
let aff = Transform2::identity();
assert_eq!(aff * pt, pt);
// Also works in 3D.
let pt = Point3::new(1.0, 2.0, 3.0);
let t = Projective3::identity();
assert_eq!(t * pt, pt);
let aff = Affine3::identity();
assert_eq!(aff * pt, pt);
let aff = Transform3::identity();
assert_eq!(aff * pt, pt);
Trait Implementations
impl<T: RealField, C: TCategory, const D: usize> AbsDiffEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> AbsDiffEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The default tolerance to use when testing values that are close together. Read more
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
impl<T: RealField, C: TCategory, const D: usize> Clone for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Clone for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: Debug + RealField, C: Debug + TCategory, const D: usize> Debug for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: Debug + RealField, C: Debug + TCategory, const D: usize> Debug for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
Performs the /
operation. Read more
Performs the /=
operation. Read more
impl<'b, T, CA, CB, const D: usize> DivAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> DivAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the /=
operation. Read more
impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<T, CA, CB, const D: usize> DivAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> DivAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the /=
operation. Read more
impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the /=
operation. Read more
Performs the /=
operation. Read more
impl<T: RealField, C, const D: usize> From<Transform<T, C, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C, const D: usize> From<Transform<T, C, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
Performs the *
operation. Read more
impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<'b, T, CA, CB, const D: usize> MulAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> MulAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<T, CA, CB, const D: usize> MulAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> MulAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Performs the *=
operation. Read more
Performs the *=
operation. Read more
impl<T: RealField, C: TCategory, const D: usize> One for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> One for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> PartialEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> PartialEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> RelativeEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> RelativeEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The default relative tolerance for testing values that are far-apart. Read more
A test for equality that uses a relative comparison if the values are far apart.
The inverse of RelativeEq::relative_eq
.
impl<T: RealField, C, const D: usize> SimdValue for Transform<T, C, D> where
T::Element: Scalar,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T::Element, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C, const D: usize> SimdValue for Transform<T, C, D> where
T::Element: Scalar,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T::Element, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Transform<T1, C, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
impl<T1, T2, C, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Transform<T1, C, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C> SubsetOf<Transform<T2, C, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2, C1, C2, const D: usize> SubsetOf<Transform<T2, C2, D>> for Transform<T1, C1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C1: TCategory,
C2: SuperTCategoryOf<C1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
impl<T1, T2, C1, C2, const D: usize> SubsetOf<Transform<T2, C2, D>> for Transform<T1, C1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C1: TCategory,
C2: SuperTCategoryOf<C1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T: RealField, C: TCategory, const D: usize> UlpsEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> UlpsEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
The default ULPs to tolerate when testing values that are far-apart. Read more
A test for equality that uses units in the last place (ULP) if the values are far apart.
impl<T: RealField, C: TCategory, const D: usize> Copy for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Copy,
impl<T: RealField + Eq, C: TCategory, const D: usize> Eq for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Auto Trait Implementations
impl<T, C, const D: usize> !RefUnwindSafe for Transform<T, C, D>
impl<T, C, const D: usize> !UnwindSafe for Transform<T, C, D>
Blanket Implementations
Mutably borrows from an owned value. Read more
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
Checks if self
is actually part of its subset T
(and can be converted to it).
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
The inclusion map: converts self
to the equivalent element of its superset.