pub type Rotation3<T> = Rotation<T, 3>;
Expand description
A 3-dimensional rotation matrix.
Because this is an alias, not all its methods are listed here. See the Rotation
type too.
Implementations
Spherical linear interpolation between two rotation matrices.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_slerp
instead to avoid the panic.
Examples:
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let q = q1.slerp(&q2, 1.0 / 3.0);
assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
Computes the spherical linear interpolation between two rotation matrices or returns None
if both rotations are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first rotation to interpolate from.other
: the second rotation to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both rotations must be to returnNone
.
Builds a 3 dimensional rotation matrix from an axis and an angle.
Arguments
axisangle
- A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
Builds a 3D rotation matrix from an axis scaled by the rotation angle.
This is the same as Self::new(axisangle)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
Builds a 3D rotation matrix from an axis and a rotation angle.
Example
let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let rot = Rotation3::from_axis_angle(&axis, angle);
assert_eq!(rot.axis().unwrap(), axis);
assert_eq!(rot.angle(), angle);
assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
Creates a new rotation from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
Creates a rotation that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
Arguments
- dir - The look direction, that is, direction the matrix
z
axis will be aligned with. - up - The vertical direction. The only requirement of this parameter is to not be
collinear to
dir
. Non-collinearity is not checked.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::face_towards(&dir, &up);
assert_relative_eq!(rot * Vector3::z(), dir.normalize());
pub fn new_observer_frames<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
👎 Deprecated: renamed to face_towards
pub fn new_observer_frames<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Self where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
renamed to face_towards
Deprecated: Use Rotation3::face_towards instead.
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::look_at_rh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let rot = Rotation3::look_at_lh(&dir, &up);
assert_relative_eq!(rot * dir.normalize(), Vector3::z());
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot = Rotation3::rotation_between(&a, &b).unwrap();
assert_relative_eq!(rot * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap();
let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
Raise the quaternion to a given floating power, i.e., returns the rotation with the same
axis as self
and an angle equal to self.angle()
multiplied by n
.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);
Builds a rotation from a basis assumed to be orthonormal.
In order to get a valid unit-quaternion, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
pub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Self where
T: RealField,
pub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Self where
T: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: a guess of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation3::identity()
if no other guesses come to mind.
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
The rotation angle in [0; pi].
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = Rotation3::from_axis_angle(&axis, 1.78);
assert_relative_eq!(rot.angle(), 1.78);
The rotation axis. Returns None
if the rotation angle is zero or PI.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
assert_relative_eq!(rot.axis().unwrap(), axis);
// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());
The rotation axis multiplied by the rotation angle.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = Rotation3::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
The rotation axis and angle in ]0, pi] of this unit quaternion.
Returns None
if the angle is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = Rotation3::from_axis_angle(&axis, angle);
let axis_angle = rot.axis_angle().unwrap();
assert_relative_eq!(axis_angle.0, axis);
assert_relative_eq!(axis_angle.1, angle);
// Case with a zero angle.
let rot = Rotation3::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
👎 Deprecated: This is renamed to use .euler_angles()
.
This is renamed to use .euler_angles()
.
Creates Euler angles from a rotation.
The angles are produced in the form (roll, pitch, yaw).
Euler angles corresponding to this rotation from a rotation.
The angles are produced in the form (roll, pitch, yaw).
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
Trait Implementations
impl<T: SimdRealField> From<Unit<Quaternion<T>>> for Rotation3<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Unit<Quaternion<T>>> for Rotation3<T> where
T::Element: SimdRealField,
Performs the conversion.
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Rotation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for Rotation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
impl<T1, T2> SubsetOf<Unit<Quaternion<T2>>> for Rotation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<Quaternion<T2>>> for Rotation3<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
The inclusion map: converts self
to the equivalent element of its superset.
Checks if element
is actually part of the subset Self
(and can be converted to it).
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more