#[repr(transparent)]pub struct BitArray<O = Lsb0, V = [usize; 1]> where
O: BitOrder,
V: BitView, { /* private fields */ }
Expand description
An array of individual bits, able to be held by value on the stack.
This type is generic over all Sized
implementors of the BitView
trait.
Due to limitations in the Rust language’s const-generics implementation (it is
both unstable and incomplete), this must take an array type parameter directly,
rather than register type and bit-count integer parameters. This makes it less
convenient to use than C++’s std::bitset<N>
array type. The bitarr!
macro is capable of constructing both values and specific types of BitArray
,
and this macro should be preferred for most use.
The advantage of using this wrapper is that it implements Deref
/Mut
to
BitSlice
, as well as implementing all of BitSlice
s traits by forwarding to
the BitSlice
view of its contained data. This allows it to have BitSlice
behavior by itself, without requiring explicit .as_bitslice()
calls in user
code.
Limitations
This does not track start or end indices of its BitSlice
view, and so that
view will always fully span the buffer. You cannot produce, for example, an
array of twelve bits.
Type Parameters
O
: The ordering of bits within memory registers.V
: Some buffer which can be used as the basis for aBitSlice
view. This will usually be an array of[T: BitRegister; N]
.
Examples
This type is useful for marking that some value is always to be used as a
BitSlice
.
use bitvec::prelude::*;
struct HasBitfields {
header: u32,
// creates a type declaration.
fields: bitarr!(for 20, in Msb0, u8),
}
impl HasBitfields {
pub fn new() -> Self {
Self {
header: 0,
// creates a value object.
// the type paramaters must be repeated.
fields: bitarr![Msb0, u8; 0; 20],
}
}
/// Access a bit region directly
pub fn get_subfield(&self) -> &BitSlice<Msb0, u8> {
&self.fields[.. 4]
}
/// Read a 12-bit value out of a region
pub fn read_value(&self) -> u16 {
self.fields[4 .. 16].load()
}
/// Write a 12-bit value into a region
pub fn set_value(&mut self, value: u16) {
self.fields[4 .. 16].store(value);
}
}
Eventual Obsolescence
When const-generics stabilize, this will be modified to have a signature more
like BitArray<O, T, const N: usize>([T; elts::<T>(N)]);
, to mirror the
behavior of ordinary arrays [T; N]
as they stand today.
Implementations
Wraps a buffer in a BitArray
.
Examples
use bitvec::prelude::*;
let data = [0u8; 2];
let bits: BitArray<Msb0, _> = BitArray::new(data);
assert_eq!(bits.len(), 16);
Removes the BitArray
wrapper, leaving the contained buffer.
Examples
use bitvec::prelude::*;
let bitarr = bitarr![Lsb0, usize; 0; 30];
let native: [usize; 1] = bitarr.value();
pub fn as_bitslice(&self) -> &BitSlice<O, V::Store>ⓘ
pub fn as_bitslice(&self) -> &BitSlice<O, V::Store>ⓘ
Views the array as a BitSlice
.
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, V::Store>ⓘ
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, V::Store>ⓘ
Views the array as a mutable BitSlice
.
Views the array as a slice of its underlying memory registers.
Views the array as a mutable slice of its underlying memory registers.
Mutably views the interior buffer.
Methods from Deref<Target = BitSlice<O, V::Store>>
Returns a mutable pointer to the first bit of the slice, or None
if it is empty.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Examples
use bitvec::prelude::*;
let x = bits![mut 0, 1, 0];
if let Some(mut first) = x.first_mut() {
*first = true;
}
assert_eq!(x, bits![1, 1, 0]);
Returns the first and all the rest of the bits of the slice, or
None
if it is empty.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Because the references are permitted to use the same memory address, they are marked as aliasing in order to satisfy Rust’s requirements about freedom from data races.
Examples
use bitvec::prelude::*;
let x = bits![mut 0, 0, 1];
if let Some((mut first, rest)) = x.split_first_mut() {
*first = true;
rest.set(0, true);
rest.set(1, false);
}
assert_eq!(x, bits![1, 1, 0]);
Returns the last and all the rest of the bits of the slice, or
None
if it is empty.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Because the references are permitted to use the same memory address, they are marked as aliasing in order to satisfy Rust’s requirements about freedom from data races.
Examples
use bitvec::prelude::*;
let x = bits![mut 1, 0, 0];
if let Some((mut last, rest)) = x.split_last_mut() {
*last = true;
rest.set(0, false);
rest.set(1, true);
}
assert_eq!(x, bits![0, 1, 1]);
Returns a mutable pointer to the last bit in the slice.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Examples
use bitvec::prelude::*;
let x = bits![mut 0, 1, 0];
if let Some(mut last) = x.last_mut() {
*last = true;
}
assert_eq!(x, bits![0, 1, 1]);
Returns a reference to a bit or subslice depending on the type of index.
- If given a position, returns a reference to the bit at that position
or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range, or
None
if out of bounds.
Original
Examples
use bitvec::prelude::*;
let v = bits![0, 1, 0];
assert_eq!(Some(&true), v.get(1).as_deref());
assert_eq!(Some(bits![0, 1]), v.get(0 .. 2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0 .. 4));
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::Mut> where
I: BitSliceIndex<'a, O, T>,
pub fn get_mut<'a, I>(&'a mut self, index: I) -> Option<I::Mut> where
I: BitSliceIndex<'a, O, T>,
Returns a mutable reference to a bit or subslice depending on the type
of index (see .get()
) or None
if the index is out of bounds.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Examples
use bitvec::prelude::*;
let x = bits![mut 0, 0, 1];
if let Some(mut bit) = x.get_mut(1) {
*bit = true;
}
assert_eq!(x, bits![0, 1, 1]);
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Immut where
I: BitSliceIndex<'a, O, T>,
pub unsafe fn get_unchecked<'a, I>(&'a self, index: I) -> I::Immut where
I: BitSliceIndex<'a, O, T>,
Returns a reference to a bit or subslice, without doing bounds checking.
This is generally not recommended; use with caution! Calling this method
with an out-of-bounds index is undefined behavior even if the
resulting reference is not used. For a safe alternative, see .get()
.
Original
Examples
use bitvec::prelude::*;
let x = bits![0, 1, 0];
unsafe {
assert_eq!(x.get_unchecked(1), &true);
}
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::Mut where
I: BitSliceIndex<'a, O, T>,
pub unsafe fn get_unchecked_mut<'a, I>(&'a mut self, index: I) -> I::Mut where
I: BitSliceIndex<'a, O, T>,
Returns a mutable reference to a bit or subslice, without doing bounds checking.
This is generally not recommended; use with caution! Calling this method
with an out-of-bounds index is undefined behavior even if the
resulting reference is not used. For a safe alternative, see
[.get_mut()
].
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
Examples
use bitvec::prelude::*;
let x = bits![mut 0; 3];
unsafe {
let mut bit = x.get_unchecked_mut(1);
*bit = true;
}
assert_eq!(x, bits![0, 1, 0]);
Returns an iterator over the slice.
Original
API Differences
This iterator yields BitRef
proxy references, rather than &bool
ordinary references. It does so in order to promote consistency in the
crate, and make switching between immutable and mutable single-bit
access easier.
The produced iterator has a by_ref
adapter that yields &bool
references, and a by_val
adapter that yields bool
values. Use
these methods to fit this iterator into APIs that expect ordinary bool
inputs.
Examples
use bitvec::prelude::*;
let x = bits![0, 0, 1];
let mut iterator = x.iter();
assert_eq!(iterator.next().as_deref(), Some(&false));
assert_eq!(iterator.next().as_deref(), Some(&false));
assert_eq!(iterator.next().as_deref(), Some(&true));
assert_eq!(iterator.next().as_deref(), None);
Returns an iterator that allows modifying each bit.
Original
API Differences
This crate cannot manifest &mut bool
references, and must use the
BitRef
proxy type where &mut bool
exists in the standard library
API. The proxy value must be bound as mut
in order to write through
it.
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Examples
use bitvec::prelude::*;
let x = bits![mut 0, 0, 1];
for mut bit in x.iter_mut() {
*bit = !*bit;
}
assert_eq!(x, bits![1, 1, 0]);
Returns an iterator over all contiguous windows of length size
. The
windows overlap. If the slice is shorter than size
, the iterator
returns no values.
Original
Panics
Panics if size
is 0.
Examples
use bitvec::prelude::*;
let slice = bits![0, 0, 1, 1];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), bits![0; 2]);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![1; 2]);
assert!(iter.next().is_none());
If the slice is shorter than size
:
use bitvec::prelude::*;
let slice = bits![0; 3];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not
divide the length of the slice, then the last chunk will not have length
chunk_size
.
See .chunks_exact()
for a variant of this iterator that returns
chunks of always exactly chunk_size
bits, and .rchunks()
for the
same iterator but starting at the end of the slice.
Original
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let slice = bits![0, 1, 0, 0, 1];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![0, 0]);
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().is_none());
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not have
length chunk_size
.
See .chunks_exact_mut()
for a variant of this iterator that returns
chunks of always exactly chunk_size
bits, and .rchunks_mut()
for
the same iterator but starting at the end of the slice.
Original
API Differences
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let v = bits![mut 0; 5];
let mut count = 1;
for chunk in v.chunks_mut(2) {
for mut bit in chunk.iter_mut() {
*bit = count % 2 == 0;
}
count += 1;
}
assert_eq!(v, bits![0, 0, 1, 1, 0]);
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, O, T>ⓘNotable traits for ChunksExact<'a, O, T>impl<'a, O, T> Iterator for ChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, O, T>ⓘNotable traits for ChunksExact<'a, O, T>impl<'a, O, T> Iterator for ChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
impl<'a, O, T> Iterator for ChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not
divide the length of the slice, then the last up to chunk_size-1
bits
will be omitted and can be retrieved from the .remainder()
method of
the iterator.
Due to each chunk having exactly chunk_size
bits, the compiler may be
able to optimize the resulting code better than in the case of
.chunks()
.
See .chunks()
for a variant of this iterator that also returns the
remainder as a smaller chunk, and .rchunks_exact()
for the same
iterator but starting at the end of the slice.
Original
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let slice = bits![0, 1, 1, 0, 0];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![1, 0]);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), bits![0]);
pub fn chunks_exact_mut(
&mut self,
chunk_size: usize
) -> ChunksExactMut<'_, O, T>ⓘNotable traits for ChunksExactMut<'a, O, T>impl<'a, O, T> Iterator for ChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
pub fn chunks_exact_mut(
&mut self,
chunk_size: usize
) -> ChunksExactMut<'_, O, T>ⓘNotable traits for ChunksExactMut<'a, O, T>impl<'a, O, T> Iterator for ChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
impl<'a, O, T> Iterator for ChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
bits will be omitted and can be retrieved from the .into_remainder()
method of the iterator.
Due to each chunk having exactly chunk_size
bits, the compiler may be
able to optimize the resulting code better than in the case of
.chunks_mut()
.
See .chunks_mut()
for a variant of this iterator that also returns
the remainder as a smaller chunk, and .rchunks_exact_mut()
for the
same iterator but starting at the end of the slice.
Original
API Differences
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let v = bits![mut 0; 5];
for chunk in v.chunks_exact_mut(2) {
chunk.set_all(true);
}
assert_eq!(v, bits![1, 1, 1, 1, 0]);
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not
divide the length of the slice, then the last chunk will not have length
chunk_size
.
See .rchunks_exact()
for a variant of this iterator that returns
chunks of always exactly chunk_size
bits, and .chunks()
for the
same iterator but starting at the beginning of the slice.
Original
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let slice = bits![0, 1, 0, 0, 1];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![1, 0]);
assert_eq!(iter.next().unwrap(), bits![0]);
assert!(iter.next().is_none());
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, O, T>ⓘNotable traits for RChunksMut<'a, O, T>impl<'a, O, T> Iterator for RChunksMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, O, T>ⓘNotable traits for RChunksMut<'a, O, T>impl<'a, O, T> Iterator for RChunksMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
impl<'a, O, T> Iterator for RChunksMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the end of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not have
length chunk_size
.
See .rchunks_exact_mut()
for a variant of this iterator that returns
chunks of always exactly chunk_size
bits, and .chunks_mut()
for
the same iterator but starting at the beginning of the slice.
Original
API Differences
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let v = bits![mut 0; 5];
let mut count = 1;
for chunk in v.rchunks_mut(2) {
for mut bit in chunk.iter_mut() {
*bit = count % 2 == 0;
}
count += 1;
}
assert_eq!(v, bits![0, 1, 1, 0, 0]);
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, O, T>ⓘNotable traits for RChunksExact<'a, O, T>impl<'a, O, T> Iterator for RChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, O, T>ⓘNotable traits for RChunksExact<'a, O, T>impl<'a, O, T> Iterator for RChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
impl<'a, O, T> Iterator for RChunksExact<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a BitSlice<O, T>;
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not
divide the length of the slice, then the last up to chunk_size-1
bits
will be omitted and can be retrieved from the .remainder()
method of
the iterator.
Due to each chunk having exactly chunk_size
bits, the compiler may be
able to optimize the resulting code better than in the case of
.rchunks()
.
See .rchunks()
for a variant of this iterator that also returns the
remainder as a smaller chunk, and .chunks_exact()
for the same
iterator but starting at the beginning of the slice.
Original
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let slice = bits![0, 0, 1, 1, 0];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), bits![1, 0]);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), bits![0]);
pub fn rchunks_exact_mut(
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, O, T>ⓘNotable traits for RChunksExactMut<'a, O, T>impl<'a, O, T> Iterator for RChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
pub fn rchunks_exact_mut(
&mut self,
chunk_size: usize
) -> RChunksExactMut<'_, O, T>ⓘNotable traits for RChunksExactMut<'a, O, T>impl<'a, O, T> Iterator for RChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
impl<'a, O, T> Iterator for RChunksExactMut<'a, O, T> where
O: BitOrder,
T: BitStore, type Item = &'a mut BitSlice<O, T::Alias>;
Returns an iterator over chunk_size
bits of the slice at a time,
starting at the end of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
bits will be omitted and can be retrieved from the .into_remainder()
method of the iterator.
Due to each chunk having exactly chunk_size
bits, the compiler may be
able to optimize the resulting code better than in the case of
.rchunks_mut()
.
See .rchunks_mut()
for a variant of this iterator that also returns
the remainder as a smaller chunk, and .chunks_exact_mut()
for the
same iterator but starting at the beginning of the slice.
Original
API Differences
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Panics
Panics if chunk_size
is 0.
Examples
use bitvec::prelude::*;
let v = bits![mut 0; 5];
for chunk in v.rchunks_exact_mut(2) {
chunk.set_all(true);
}
assert_eq!(v, bits![0, 1, 1, 1, 1]);
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding the index
mid
itself) and the second will contain all indices from [mid, len)
(excluding the index len
itself).
Original
Panics
Panics if mid > len
.
Behavior
When mid
is 0
or self.len()
, then the left or right return values,
respectively, are empty slices. Empty slice references produced by this
method are specified to have the address information you would expect:
a left empty slice has the same base address and start bit as self
,
and a right empty slice will have its address raised by self.len()
.
Examples
use bitvec::prelude::*;
let v = bits![0, 0, 0, 1, 1, 1];
{
let (left, right) = v.split_at(0);
assert_eq!(left, bits![]);
assert_eq!(right, v);
}
{
let (left, right) = v.split_at(2);
assert_eq!(left, bits![0, 0]);
assert_eq!(right, bits![0, 1, 1, 1]);
}
{
let (left, right) = v.split_at(6);
assert_eq!(left, v);
assert_eq!(right, bits![]);
}
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid)
(excluding the index
mid
itself) and the second will contain all indices from [mid, len)
(excluding the index len
itself).
Original
API Differences
The partition index mid
may occur anywhere in the slice, and as a
result the two returned slices may both have write access to the memory
address containing mid
. As such, the returned slices must be marked
with T::Alias
in order to correctly manage memory access going
forward.
This marking is applied to all memory accesses in both slices,
regardless of whether any future accesses actually require it. To limit
the alias marking to only the addresses that need it, use
[.bit_domain()
] or [.bit_domain_mut()
] to split either slice into
its aliased and unaliased subslices.
Panics
Panics if mid > len
.
Behavior
When mid
is 0
or self.len()
, then the left or right return values,
respectively, are empty slices. Empty slice references produced by this
method are specified to have the address information you would expect:
a left empty slice has the same base address and start bit as self
,
and a right empty slice will have its address raised by self.len()
.
Examples
use bitvec::prelude::*;
let v = bits![mut 0, 0, 0, 1, 1, 1];
// scoped to restrict the lifetime of the borrows
{
let (left, right) = v.split_at_mut(2);
assert_eq!(left, bits![0, 0]);
assert_eq!(right, bits![0, 1, 1, 1]);
left.set(1, true);
right.set(1, false);
}
assert_eq!(v, bits![0, 1, 0, 0, 1, 1]);
Returns an iterator over subslices separated by bits that match pred
.
The matched bit is not contained in the subslices.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
Examples
use bitvec::prelude::*;
let slice = bits![0, 1, 1, 0];
let mut iter = slice.split(|pos, _bit| pos % 3 == 2);
assert_eq!(iter.next().unwrap(), bits![0, 1]);
assert_eq!(iter.next().unwrap(), bits![0]);
assert!(iter.next().is_none());
If the first bit is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last bit in the slice is matched, an empty slice will be the last item returned by the iterator:
use bitvec::prelude::*;
let slice = bits![0, 0, 1];
let mut iter = slice.split(|_pos, bit| *bit);
assert_eq!(iter.next().unwrap(), bits![0, 0]);
assert_eq!(iter.next().unwrap(), bits![]);
assert!(iter.next().is_none());
If two matched bits are directly adjacent, an empty slice will be present between them:
use bitvec::prelude::*;
let slice = bits![1, 0, 0, 1];
let mut iter = slice.split(|_pos, bit| !*bit);
assert_eq!(iter.next().unwrap(), bits![1]);
assert_eq!(iter.next().unwrap(), bits![]);
assert_eq!(iter.next().unwrap(), bits![1]);
assert!(iter.next().is_none());
Returns an iterator over mutable subslices separated by bits that match
pred
. The matched bit is not contained in the subslices.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Examples
use bitvec::prelude::*;
let v = bits![mut 0, 0, 1, 0, 1, 0];
for group in v.split_mut(|_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(v, bits![1, 0, 1, 1, 1, 1]);
Returns an iterator over subslices separated by bits that match pred
,
starting at the end of the slice and working backwards. The matched bit
is not contained in the subslices.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
Examples
use bitvec::prelude::*;
let slice = bits![1, 1, 1, 0, 1, 1];
let mut iter = slice.rsplit(|_pos, bit| !*bit);
assert_eq!(iter.next().unwrap(), bits![1; 2]);
assert_eq!(iter.next().unwrap(), bits![1; 3]);
assert!(iter.next().is_none());
As with .split()
, if the first or last bit is matched, an empty
slice will be the first (or last) item returned by the iterator.
use bitvec::prelude::*;
let v = bits![1, 0, 0, 1, 0, 0, 1];
let mut it = v.rsplit(|_pos, bit| *bit);
assert_eq!(it.next().unwrap(), bits![]);
assert_eq!(it.next().unwrap(), bits![0; 2]);
assert_eq!(it.next().unwrap(), bits![0; 2]);
assert_eq!(it.next().unwrap(), bits![]);
assert!(it.next().is_none());
Returns an iterator over mutable subslices separated by bits that match
pred
, starting at the end of the slice and working backwards. The
matched bit is not contained in the subslices.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Examples
use bitvec::prelude::*;
let v = bits![mut 0, 0, 1, 0, 1, 0];
for group in v.rsplit_mut(|_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(v, bits![1, 0, 1, 1, 1, 1]);
Returns an iterator over subslices separated by bits that match pred
,
limited to returning at most n
items. The matched bit is not contained
in the subslices.
The last item returned, if any, will contain the remainder of the slice.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
Examples
Print the slice split once by set bits (i.e., [0, 0,]
, [0, 1, 0]
):
use bitvec::prelude::*;
let v = bits![0, 0, 1, 0, 1, 0];
for group in v.splitn(2, |_pos, bit| *bit) {
println!("{:b}", group);
}
Returns an iterator over subslices separated by bits that match pred
,
limited to returning at most n
items. The matched bit is not contained
in the subslices.
The last item returned, if any, will contain the remainder of the slice.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Examples
use bitvec::prelude::*;
let v = bits![mut 0, 0, 1, 0, 1, 0];
for group in v.splitn_mut(2, |_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(v, bits![1, 0, 1, 1, 1, 0]);
Returns an iterator over subslices separated by bits that match pred
,
limited to returning at most n
items. This starts at the end of the
slice and works backwards. The matched bit is not contained in the
subslices.
The last item returned, if any, will contain the remainder of the slice.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
Examples
Print the slice split once, starting from the end, by set bits (i.e.,
[0]
, [0, 0, 1, 0]
):
use bitvec::prelude::*;
let v = bits![0, 0, 1, 0, 1, 0];
for group in v.rsplitn(2, |_pos, bit| *bit) {
println!("{:b}", group);
}
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool,
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, O, T, F>ⓘ where
F: FnMut(usize, &bool) -> bool,
Returns an iterator over subslices separated by bits that match pred
,
limited to returning at most n
items. This starts at the end of the
slice and works backwards. The matched bit is not contained in the
subslices.
The last item returned, if any, will contain the remainder of the slice.
Original
API Differences
In order to allow more than one bit of information for the split decision, the predicate receives the index of each bit, as well as its value.
This iterator marks each yielded item as aliased, as iterators can be
used to yield multiple items into the same scope. If you are using
the iterator in a manner that ensures that all yielded items have
disjoint lifetimes, you can use the .remove_alias()
adapter on it to
remove the alias marker from the yielded subslices.
Examples
use bitvec::prelude::*;
let v = bits![mut 0, 0, 1, 0, 1, 0];
for group in v.rsplitn_mut(2, |_pos, bit| *bit) {
group.set(0, true);
}
assert_eq!(v, bits![1, 0, 1, 0, 1, 1]);
Returns true
if the slice contains a subslice that matches the given
span.
Original
API Differences
This searches for a matching subslice (allowing different type
parameters) rather than for a specific bit. Searching for a contained
element with a given value is not as useful on a collection of bool
.
Furthermore, BitSlice
defines any
and not_all
, which are
optimized searchers for any true
or false
bit, respectively, in a
sequence.
Examples
use bitvec::prelude::*;
let data = 0b0101_1010u8;
let bits_msb = data.view_bits::<Msb0>();
let bits_lsb = data.view_bits::<Lsb0>();
assert!(bits_msb.contains(&bits_lsb[1 .. 5]));
This example uses a palindrome pattern to demonstrate that the slice being searched for does not need to have the same type parameters as the slice being searched.
Returns true
if needle
is a prefix of the slice.
Original
Examples
use bitvec::prelude::*;
let v = bits![0, 1, 0, 0];
assert!(v.starts_with(bits![0]));
assert!(v.starts_with(bits![0, 1]));
assert!(!v.starts_with(bits![1]));
assert!(!v.starts_with(bits![1, 0]));
Always returns true
if needle
is an empty slice:
use bitvec::prelude::*;
let v = bits![0, 1, 0];
assert!(v.starts_with(bits![]));
let v = bits![];
assert!(v.starts_with(bits![]));
Returns true
if needle
is a suffix of the slice.
Original
Examples
use bitvec::prelude::*;
let v = bits![0, 1, 0, 0];
assert!(v.ends_with(bits![0]));
assert!(v.ends_with(bits![0; 2]));
assert!(!v.ends_with(bits![1]));
assert!(!v.ends_with(bits![1, 0]));
Always returns true
if needle
is an empty slice:
use bitvec::prelude::*;
let v = bits![0, 1, 0];
assert!(v.ends_with(bits![]));
let v = bits![];
assert!(v.ends_with(bits![]));
Rotates the slice in-place such that the first by
bits of the slice
move to the end while the last self.len() - by
bits move to the
front. After calling .rotate_left()
, the bit previously at index by
will become the first bit in the slice.
Original
Panics
This function will panic if by
is greater than the length of the
slice. Note that by == self.len()
does not panic and is a noöp.
Complexity
Takes linear (in self.len()
) time.
Examples
use bitvec::prelude::*;
let a = bits![mut 0, 0, 1, 0, 1, 0];
a.rotate_left(2);
assert_eq!(a, bits![1, 0, 1, 0, 0, 0]);
Rotating a subslice:
use bitvec::prelude::*;
let a = bits![mut 0, 0, 1, 0, 1, 1];
a[1 .. 5].rotate_left(1);
assert_eq!(a, bits![0, 1, 0, 1, 0, 1]);
Rotates the slice in-place such that the first self.len() - by
bits of
the slice move to the end while the last by
bits move to the front.
After calling .rotate_right()
, the bit previously at index `self.len()
- by` will become the first bit in the slice.
Original
Panics
This function will panic if by
is greater than the length of the
slice. Note that by == self.len()
does not panic and is a noöp.
Complexity
Takes linear (in self.len()
) time.
Examples
use bitvec::prelude::*;
let a = bits![mut 0, 0, 1, 1, 1, 0];
a.rotate_right(2);
assert_eq!(a, bits![1, 0, 0, 0, 1, 1]);
Rotating a subslice:
use bitvec::prelude::*;
let a = bits![mut 0, 0, 1, 0, 1, 1];
a[1 .. 5].rotate_right(1);
assert_eq!(a, bits![0, 1, 0, 1, 0, 1]);
Copies bits from one part of the slice to another part of itself.
src
is the range within self
to copy from. dest
is the starting
index of the range within self
to copy to, which will have the same
length as src
. The two ranges may overlap. The ends of the two ranges
must be less than or equal to self.len()
.
Original
Panics
This function will panic if either range exceeds the end of the slice,
or if the end of src
is before the start.
Examples
Copying four bits within a slice:
use bitvec::prelude::*;
let bits = bits![mut 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0];
bits.copy_within(1 .. 5, 8);
assert_eq!(bits, bits![1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0]);
Transmute the bit-slice to a bit-slice of another type, ensuring alignment of the types is maintained.
Original
API Differences
Type U
is required to have the same BitStore
type family as
type T
. If T
is a fundamental integer, so must U
be; if T
is an
::Alias
type, then so must U
. Changing the type family with this
method is unsound and strictly forbidden. Unfortunately, this cannot
be encoded in the type system, so you are required to abide by this
limitation yourself.
Implementation
The algorithm used to implement this function attempts to create the
widest possible span for the middle slice. However, the slice divisions
must abide by the Domain
restrictions: the left and right slices
produced by this function will include the head and tail elements of the
domain (if present), as well as the left and right subslices (if any)
produced by calling slice::align_to
on the domain body (if present).
The standard library implementation currently maximizes the width of the center slice, but its API does not guarantee this property, and retains the right to produce pessimal slices. As such, this function cannot guarantee maximal center slice width either, and you cannot rely on this behavior for correctness of your work; it is only a possible performance improvement.
Safety
This method is essentially a mem::transmute
with respect to the
memory region in the retured middle slice, so all of the usual caveats
pertaining to mem::transmute::<T, U>
also apply here.
Examples
Basic usage:
use bitvec::prelude::*;
unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let bits = bytes.view_bits::<LocalBits>();
let (prefix, shorts, suffix) = bits.align_to::<u16>();
match prefix.len() {
0 => {
assert_eq!(shorts, bits[.. 48]);
assert_eq!(suffix, bits[48 ..]);
},
8 => {
assert_eq!(prefix, bits[.. 8]);
assert_eq!(shorts, bits[8 ..]);
},
_ => unreachable!("This case will not occur")
}
}
Transmute the bit-slice to a bit-slice of another type, ensuring alignment of the types is maintained.
Original
API Differences
Type U
is required to have the same BitStore
type family as
type T
. If T
is a fundamental integer, so must U
be; if T
is an
::Alias
type, then so must U
. Changing the type family with this
method is unsound and strictly forbidden. Unfortunately, this cannot
be encoded in the type system, so you are required to abide by this
limitation yourself.
Implementation
The algorithm used to implement this function attempts to create the
widest possible span for the middle slice. However, the slice divisions
must abide by the DomainMut
restrictions: the left and right slices
produced by this function will include the head and tail elements of the
domain (if present), as well as the left and right subslices (if any)
produced by calling slice::align_to_mut
on the domain body (if
present).
The standard library implementation currently maximizes the width of the center slice, but its API does not guarantee this property, and retains the right to produce pessimal slices. As such, this function cannot guarantee maximal center slice width either, and you cannot rely on this behavior for correctness of your work; it is only a possible performance improvement.
Safety
This method is essentially a mem::transmute
with respect to the
memory region in the retured middle slice, so all of the usual caveats
pertaining to mem::transmute::<T, U>
also apply here.
Examples
Basic usage:
use bitvec::prelude::*;
unsafe {
let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let bits = bytes.view_bits_mut::<LocalBits>();
let (prefix, shorts, suffix) = bits.align_to_mut::<u16>();
// same access and behavior as in `align_to`
}
Creates a vector by repeating a slice n
times.
Original
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
use bitvec::prelude::*;
assert_eq!(bits![0, 1].repeat(3), bits![0, 1, 0, 1, 0, 1]);
A panic upon overflow:
use bitvec::prelude::*;
// this will panic at runtime
bits![0, 1].repeat(BitSlice::<LocalBits, usize>::MAX_BITS);
Writes a new bit at a given index.
Parameters
&mut self
index
: The bit index at which to write. It must be in the range0 .. self.len()
.value
: The value to be written;true
for1
orfalse
for0
.
Effects
If index
is valid, then the bit to which it refers is set to value
.
Panics
This method panics if index
is not less than self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 0];
assert!(!bits[0]);
bits.set(0, true);
assert!(bits[0]);
This example panics when it attempts to set a bit that is out of bounds.
use bitvec::prelude::*;
let bits = bits![mut 0];
bits.set(1, false);
Writes a new bit at a given index.
This method supports writing through a shared reference to a bit that
may be observed by other BitSlice
handles. It is only present when the
T
type parameter supports such shared mutation (measured by the
Radium
trait).
Parameters
&self
index
: The bit index at which to write. It must be in the range0 .. self.len()
.value
: The value to be written;true
for1
orfalse
for0
.
Effects
If index
is valid, then the bit to which it refers is set to value
.
If T
is an atomic, this will lock the memory bus for the referent
address, and may cause stalls.
Panics
This method panics if index
is not less than self.len()
.
Examples
use bitvec::prelude::*;
use core::cell::Cell;
let byte = Cell::new(0u8);
let bits = byte.view_bits::<Msb0>();
let bits_2 = bits;
bits.set_aliased(1, true);
assert!(bits_2[1]);
This example panics when it attempts to set a bit that is out of bounds.
use bitvec::prelude::*;
use core::cell::Cell;
let byte = Cell::new(0u8);
let bits = byte.view_bits::<Lsb0>();
bits.set_aliased(8, false);
Tests if any bit in the slice is set (logical ∨
).
Truth Table
0 0 => 0
0 1 => 1
1 0 => 1
1 1 => 1
Parameters
&self
Returns
Whether any bit in the slice domain is set. The empty slice returns
false
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0];
assert!(bits[.. 2].any());
assert!(!bits[2 ..].any());
Tests if all bits in the slice domain are set (logical ∧
).
Truth Table
0 0 => 0
0 1 => 0
1 0 => 0
1 1 => 1
Parameters
&self
Returns
Whether all bits in the slice domain are set. The empty slice returns
true
.
Examples
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 1];
assert!(bits[.. 2].all());
assert!(!bits[2 ..].all());
Tests if all bits in the slice are unset (logical ¬∨
).
Truth Table
0 0 => 1
0 1 => 0
1 0 => 0
1 1 => 0
Parameters
&self
Returns
Whether all bits in the slice domain are unset.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0];
assert!(!bits[.. 2].not_any());
assert!(bits[2 ..].not_any());
Tests if any bit in the slice is unset (logical ¬∧
).
Truth Table
0 0 => 1
0 1 => 1
1 0 => 1
1 1 => 0
Parameters
&self
Returns
Whether any bit in the slice domain is unset.
Examples
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 1];
assert!(!bits[.. 2].not_all());
assert!(bits[2 ..].not_all());
Tests whether the slice has some, but not all, bits set and some, but not all, bits unset.
This is false
if either .all()
or .not_any()
are true
.
Truth Table
0 0 => 0
0 1 => 1
1 0 => 1
1 1 => 0
Parameters
&self
Returns
Whether the slice domain has mixed content. The empty slice returns
false
.
Examples
use bitvec::prelude::*;
let data = 0b111_000_10u8;
let bits = bits![1, 1, 0, 0, 1, 0];
assert!(!bits[.. 2].some());
assert!(!bits[2 .. 4].some());
assert!(bits.some());
Counts the number of bits set to 1
in the slice contents.
Parameters
&self
Returns
The number of bits in the slice domain that are set to 1
.
Examples
Basic usage:
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 0];
assert_eq!(bits[.. 2].count_ones(), 2);
assert_eq!(bits[2 ..].count_ones(), 0);
Counts the number of bits cleared to 0
in the slice contents.
Parameters
&self
Returns
The number of bits in the slice domain that are cleared to 0
.
Examples
Basic usage:
use bitvec::prelude::*;
let bits = bits![1, 1, 0, 0];
assert_eq!(bits[.. 2].count_zeros(), 0);
assert_eq!(bits[2 ..].count_zeros(), 2);
Enumerates all bits in a BitSlice
that are set to 1
.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1, 0, 0, 0, 1];
let mut indices = [1, 4, 8].iter().copied();
let mut iter_ones = bits.iter_ones();
let mut compose = bits.iter()
.copied()
.enumerate()
.filter_map(|(idx, bit)| if bit { Some(idx) } else { None });
for ((a, b), c) in iter_ones.zip(compose).zip(indices) {
assert_eq!(a, b);
assert_eq!(b, c);
}
Enumerates all bits in a BitSlice
that are cleared to 0
.
Examples
use bitvec::prelude::*;
let bits = bits![1, 0, 1, 1, 0, 1, 1, 1, 0];
let mut indices = [1, 4, 8].iter().copied();
let mut iter_zeros = bits.iter_zeros();
let mut compose = bits.iter()
.copied()
.enumerate()
.filter_map(|(idx, bit)| if !bit { Some(idx) } else { None });
for ((a, b), c) in iter_zeros.zip(compose).zip(indices) {
assert_eq!(a, b);
assert_eq!(b, c);
}
Gets the index of the first bit in the bit-slice set to 1
.
Examples
use bitvec::prelude::*;
assert!(bits![].first_one().is_none());
assert_eq!(bits![0, 0, 1].first_one().unwrap(), 2);
Gets the index of the first bit in the bit-slice set to 0
.
Examples
use bitvec::prelude::*;
assert!(bits![].first_zero().is_none());
assert_eq!(bits![1, 1, 0].first_zero().unwrap(), 2);
Gets the index of the last bit in the bit-slice set to 1
.
Examples
use bitvec::prelude::*;
assert!(bits![].last_one().is_none());
assert_eq!(bits![1, 0, 0, 1].last_one().unwrap(), 3);
Gets the index of the last bit in the bit-slice set to 0
.
Examples
use bitvec::prelude::*;
assert!(bits![].last_zero().is_none());
assert_eq!(bits![0, 1, 1, 0].last_zero().unwrap(), 3);
Counts the number of bits from the start of the bit-slice to the first
bit set to 0
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].leading_ones(), 0);
assert_eq!(bits![0].leading_ones(), 0);
assert_eq!(bits![1, 0, 1, 1].leading_ones(), 1);
assert_eq!(bits![1, 1, 1, 1].leading_ones(), 4);
Counts the number of bits from the start of the bit-slice to the first
bit set to 1
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].leading_zeros(), 0);
assert_eq!(bits![1].leading_zeros(), 0);
assert_eq!(bits![0, 1, 0, 0].leading_zeros(), 1);
assert_eq!(bits![0, 0, 0, 0].leading_zeros(), 4);
Counts the number of bits from the end of the bit-slice to the last bit
set to 0
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].trailing_ones(), 0);
assert_eq!(bits![0].trailing_ones(), 0);
assert_eq!(bits![1, 0, 1, 1].trailing_ones(), 2);
Counts the number of bits from the end of the bit-slice to the last bit
set to 1
.
This returns 0
if the bit-slice is empty.
Examples
use bitvec::prelude::*;
assert_eq!(bits![].trailing_zeros(), 0);
assert_eq!(bits![1].trailing_zeros(), 0);
assert_eq!(bits![0, 1, 0, 0].trailing_zeros(), 2);
pub fn clone_from_bitslice<O2, T2>(&mut self, src: &BitSlice<O2, T2>) where
O2: BitOrder,
T2: BitStore,
pub fn clone_from_bitslice<O2, T2>(&mut self, src: &BitSlice<O2, T2>) where
O2: BitOrder,
T2: BitStore,
Copies the bits from src
into self
.
The length of src
must be the same as `self.
If src
has the same type arguments as self
, it can be more
performant to use .copy_from_bitslice()
.
Original
API Differences
This method is renamed, as it takes a bit slice rather than an element slice.
Panics
This function will panic if the two slices have different lengths.
Examples
Cloning two bits from a slice into another:
use bitvec::prelude::*;
let src = bits![Msb0, u16; 1; 4];
let dst = bits![mut Lsb0, u8; 0; 2];
dst.clone_from_bitslice(&src[2 ..]);
assert_eq!(dst, bits![1; 2]);
Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use clone_from_slice on a single slice will result in a compile failure:
use bitvec::prelude::*;
let slice = bits![mut 0, 0, 0, 1, 1];
slice[.. 2].clone_from_bitslice(&slice[3 ..]); // compile fail!
To work around this, we can use .split_at_mut()
to create two
distinct sub-slices from a slice:
use bitvec::prelude::*;
let slice = bits![mut 0, 0, 0, 1, 1];
{
let (left, right) = slice.split_at_mut(2);
left.clone_from_bitslice(&right[1 ..]);
}
assert_eq!(slice, bits![1, 1, 0, 1, 1]);
Performance
If self
and src
use the same type arguments, this specializes to
.copy_from_bitslice()
; if you know statically that this is the case,
prefer to call that method directly and avoid the cost of detection at
runtime. Otherwise, this is a bit-by-bit crawl across both slices, which
is a slow process.
Copies all bits from src
into self
, using a memcpy wherever
possible.
The length of src
must be same as self
.
If src
does not use the same type arguments as self
, use
.clone_from_bitslice()
.
Original
API Differences
This method is renamed, as it takes a bit slice rather than an element slice.
Panics
This function will panic if the two slices have different lengths.
Examples
Copying two bits from a slice into another:
use bitvec::prelude::*;
let src = bits![1; 4];
let dst = bits![mut 0; 2];
// Because the slices have to be the same length,
// we slice the source slice from four bits to
// two. It will panic if we don't do this.
dst.clone_from_bitslice(&src[2..]);
Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use [.copy_from_slice()] on a single slice will result in a compile failure:
use bitvec::prelude::*;
let slice = bits![mut 0, 0, 0, 1, 1];
slice[.. 2].copy_from_bitslice(&bits[3 ..]); // compile fail!
To work around this, we can use .split_at_mut()
to create two
distinct sub-slices from a slice:
use bitvec::prelude::*;
let slice = bits![mut 0, 0, 0, 1, 1];
{
let (left, right) = slice.split_at_mut(2);
left.copy_from_bitslice(&right[1 ..]);
}
assert_eq!(slice, bits![1, 1, 0, 1, 1]);
pub fn swap_with_bitslice<O2, T2>(&mut self, other: &mut BitSlice<O2, T2>) where
O2: BitOrder,
T2: BitStore,
pub fn swap_with_bitslice<O2, T2>(&mut self, other: &mut BitSlice<O2, T2>) where
O2: BitOrder,
T2: BitStore,
Swaps all bits in self
with those in other
.
The length of other
must be the same as self
.
Original
API Differences
This method is renamed, as it takes a bit slice rather than an element slice.
Panics
This function will panic if the two slices have different lengths.
Examples
use bitvec::prelude::*;
let mut one = [0xA5u8, 0x69];
let mut two = 0x1234u16;
let one_bits = one.view_bits_mut::<Msb0>();
let two_bits = two.view_bits_mut::<Lsb0>();
one_bits.swap_with_bitslice(two_bits);
assert_eq!(one, [0x2C, 0x48]);
assert_eq!(two, 0x96A5);
Shifts the contents of a bit-slice left (towards index 0
).
This moves the contents of the slice from by ..
down to
0 .. len - by
, and erases len - by ..
to 0
. As this is a
destructive (and linearly expensive) operation, you may prefer instead
to use range subslicing.
Parameters
&mut self
by
: The distance by which to shift the slice contents.
Panics
This panics if by
is not less than self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 1; 6];
bits.shift_left(2);
assert_eq!(bits, bits![1, 1, 1, 1, 0, 0]);
Shifts the contents of a bit-slice right (towards index self.len()
).
This moves the contents of the slice from .. len - by
up to by ..
,
and erases .. by
to 0
. As this is a destructive (and linearly
expensive) operation, you may prefer instead to use range subslicing.
Parameters
&mut self
by
: The distance by which to shift the slice contents.
Panics
This panics if by
is not less than self.len()
.
Examples
use bitvec::prelude::*;
let bits = bits![mut 1; 6];
bits.shift_right(2);
assert_eq!(bits, bits![0, 0, 1, 1, 1, 1]);
Sets all bits in the slice to a value.
Parameters
&mut self
value
: The bit value to which all bits in the slice will be set.
Examples
use bitvec::prelude::*;
let mut src = 0u8;
let bits = src.view_bits_mut::<Msb0>();
bits[2 .. 6].set_all(true);
assert_eq!(bits.as_slice(), &[0b0011_1100]);
bits[3 .. 5].set_all(false);
assert_eq!(bits.as_slice(), &[0b0010_0100]);
bits[.. 1].set_all(true);
assert_eq!(bits.as_slice(), &[0b1010_0100]);
Applies a function to each bit in the slice.
BitSlice
cannot implement IndexMut
, as it cannot manifest &mut bool
references, and the BitRef
proxy reference has an unavoidable
overhead. This method bypasses both problems, by applying a function to
each pair of index and value in the slice, without constructing a proxy
reference. Benchmarks indicate that this method is about 2–4 times
faster than the .iter_mut().enumerate()
equivalent.
Parameters
&mut self
func
: A function which receives two arguments,index: usize
andvalue: bool
, and returns abool
.
Effects
For each index in the slice, the result of invoking func
with the
index number and current bit value is written into the slice.
Examples
use bitvec::prelude::*;
let mut data = 0u8;
let bits = data.view_bits_mut::<Msb0>();
bits.for_each(|idx, _bit| idx % 3 == 0);
assert_eq!(data, 0b100_100_10);
Produces the absolute offset in bits between two slice heads.
While this method is sound for any two arbitrary bit slices, the answer it produces is meaningful only when one argument is a strict subslice of the other. If the two slices are created from different buffers entirely, a comparison is undefined; if the two slices are disjoint regions of the same buffer, then the semantically correct distance is between the tail of the lower and the head of the upper, which this does not measure.
Visual Description
Consider the following sequence of bits:
[ 0 1 2 3 4 5 6 7 8 9 a b ]
| ^^^^^^^ |
^^^^^^^^^^^^^^^^^^^^^^^
It does not matter whether there are bits between the tail of the smaller and the larger slices. The offset is computed from the bit distance between the two heads.
Behavior
This function computes the semantic distance between the heads, rather
than the *electrical. It does not take into account the BitOrder
implementation of the slice.
Safety and Soundness
One of self
or other
must contain the other for this comparison to
be meaningful.
Parameters
&self
other
: Another bit slice. This must be either a strict subregion or a strict superregion ofself
.
Returns
The distance in (semantic) bits betwen the heads of each region. The
value is positive when other
is higher in the address space than
self
, and negative when other
is lower in the address space than
self
.
Writes a new bit at a given index, without doing bounds checking.
This is generally not recommended; use with caution! Calling this method
with an out-of-bounds index is undefined behavior. For a safe
alternative, see .set()
.
Parameters
&mut self
index
: The bit index at which to write. It must be in the range0 .. self.len()
.value
: The value to be written;true
for1
orfalse
for0
.
Effects
The bit at index
is set to value
. If index
is out of bounds, then
the memory access is incorrect, and its behavior is unspecified.
Safety
This method is not safe. It performs raw pointer arithmetic to seek
from the start of the slice to the requested index, and set the bit
there. It does not inspect the length of self
, and it is free to
perform out-of-bounds memory write access.
Use this method only when you have already performed the bounds check, and can guarantee that the call occurs with a safely in-bounds index.
Examples
This example uses a bit slice of length 2, and demonstrates out-of-bounds access to the last bit in the element.
use bitvec::prelude::*;
let bits = bits![mut 0; 2];
let (first, _) = bits.split_at_mut(1);
unsafe {
first.set_unchecked(1, true);
}
assert_eq!(bits, bits![0, 1]);
Writes a new bit at a given index, without doing bounds checking.
This method supports writing through a shared reference to a bit that
may be observed by other BitSlice
handles. It is only present when the
T
type parameter supports such shared mutation (measured by the
Radium
trait).
Effects
The bit at index
is set to value
. If index
is out of bounds, then
the memory access is incorrect, and its behavior is unspecified. If T
is an atomic, this will lock the memory bus for the referent
address, and may cause stalls.
Safety
This method is not safe. It performs raw pointer arithmetic to seek
from the start of the slice to the requested index, and set the bit
there. It does not inspect the length of self
, and it is free to
perform out-of-bounds memory write access.
Use this method only when you have already performed the bounds check, and can guarantee that the call occurs with a safely in-bounds index.
Examples
use bitvec::prelude::*;
use core::cell::Cell;
let byte = Cell::new(0u8);
let bits = byte.view_bits::<Msb0>();
let bits_2 = bits;
let (first, _) = bits.split_at(1);
assert_eq!(first.len(), 1);
unsafe { first.set_aliased_unchecked(2, true); }
assert!(bits_2[2]);
Divides one slice into two at an index, without performing any bounds checking.
See .split_at()
.
Safety
mid
must not be greater than self.len()
. If this condition is
violated, the function behavior is unspecified.
Examples
use bitvec::prelude::*;
let bits = bits![0, 0, 0, 1, 1, 1];
let (l, r) = unsafe { bits.split_at_unchecked(3) };
assert!(l.not_any());
assert!(r.all());
let (l, r) = unsafe { bits.split_at_unchecked(6) };
assert_eq!(l, bits);
assert!(r.is_empty());
Divides one mutable slice into two at an index.
See .split_at_mut()
.
Safety
mid
must not be greater than self.len()
.
pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize) where
R: RangeBounds<usize>,
pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize) where
R: RangeBounds<usize>,
Copies bits from one part of the slice to another part of itself, without doing bounds checks.
The ranges are allowed to overlap.
Parameters
&mut self
src
: The range withinself
from which to copy.dst
: The starting index withinself
at which to paste.
Effects
self[src]
is copied to self[dest .. dest + src.end() - src.start()]
.
Safety
src
and dest .. dest + src.len()
must be entirely within
self.len()
.
Returns a raw bit-pointer to the base of the bit-slice’s region.
The caller must ensure that the bit-slice outlives the bit-pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the bit-pointer
(non-transitively) points to is never written to using this bit-pointer
or any bit-pointer derived from it. If you need to mutate the contents
of the slice, use .as_mut_bitptr()
.
Modifying the container referenced by this bit-slice may cause its buffer to be reällocated, which would also make any bit-pointers to it invalid.
Original
API Differences
This returns a structure, BitPtr
, rather than an actual raw pointer
*Bit
. The information required to address a bit within a memory
element cannot be encoded into a single pointer.
This structure can be converted back into a &BitSlice
with the
function from_raw_parts
.
Examples
use bitvec::prelude::*;
let x = bits![0, 0, 1];
let x_ptr = x.as_ptr();
unsafe {
for i in 0 .. x.len() {
assert_eq!(*x.get_unchecked(i), (&*x)[i]);
}
}
Returns an unsafe mutable bit-pointer to the bit-slice’s region.
The caller must ensure that the bit-slice outlives the bit-pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this bit-slice may cause its buffer to be reällocated, which would also make any bit-pointers to it invalid.
Original
API Differences
This returns *mut BitSlice
, which is the equivalont of *mut [T]
instead of *mut T
. The pointer encoding used requires more than one
CPU word of space to address a single bit, so there is no advantage to
removing the length information from the encoded pointer value.
Examples
use bitvec::prelude::*;
let bits = bits![mut Lsb0, u8; 0; 8];
let bits_ptr = bits.as_mut_ptr();
for i in 0 .. bits.len() {
unsafe {
bits_ptr.add(i).write(i % 3 == 0);
}
}
assert_eq!(bits.as_slice()[0], 0b0100_1001);
pub fn as_bitptr_range(&self) -> BitPtrRange<Const, O, T>ⓘNotable traits for BitPtrRange<M, O, T>impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
pub fn as_bitptr_range(&self) -> BitPtrRange<Const, O, T>ⓘNotable traits for BitPtrRange<M, O, T>impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
Returns the two raw bit-pointers spanning the bit-slice.
The returned range is half-open, which means that the end bit-pointer points one past the last bit of the bit-slice. This way, an empty bit-slice is represented by two equal bit-pointers, and the difference between the two bit-pointers represents the size of the bit-slice.
See as_bitptr
for warnings on using these bit-pointers. The end
bit-pointer requires extra caution, as it does not point to a valid bit
in the bit-slice.
This function allows a more direct access to bit-pointers, without
paying the cost of encoding into a *BitSlice
, at the cost of no longer
fitting into ordinary Rust interfaces.
Original
API Differences
This returns a dedicated structure, rather than a range of BitPtr
s,
because the traits needed for non-core
types to correctly operate in
ranges are still unstable. The structure can be converted into a range,
but that range will not be an iterator.
Examples
use bitvec::prelude::*;
let bits = bits![0, 1, 0, 0, 1];
let mid_ptr = bits.get(2).unwrap().into_bitptr();
let mut range = bits.as_bitptr_range();
assert!(range.contains(&mid_ptr));
unsafe {
assert!(!range.next().unwrap().read());
assert!(range.next_back().unwrap().read())
}
pub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, O, T>ⓘNotable traits for BitPtrRange<M, O, T>impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
pub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, O, T>ⓘNotable traits for BitPtrRange<M, O, T>impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
impl<M, O, T> Iterator for BitPtrRange<M, O, T> where
M: Mutability,
O: BitOrder,
T: BitStore, type Item = BitPtr<M, O, T>;
Returns the two unsafe mutable bit-pointers spanning the bit-slice.
The returned range is half-open, which means that the end bit-pointer points one past the last bitt of the bit-slice. This way, an empty bit-slice is represented by two equal bit-pointers, and the difference between the two bit-pointers represents the size of the bit-slice.
See as_mut_bitptr
for warnings on using these bit-pointers. The end
bit-pointer requires extra caution, as it does not point to a valid bit
in the bit-slice.
Original
API Differences
This returns a dedicated structure, rather than a range of BitPtr
s,
because the traits needed for non-core
types to correctly operate in
ranges are still unstable. The structure can be converted into a range,
but that range will not be an iterator.
Examples
use bitvec::prelude::*;
use bitvec::ptr as bv_ptr;
let mut data = 0u8;
let bits = data.view_bits_mut::<Msb0>();
for mut bitptr in bits.as_mut_bitptr_range() {
unsafe { bv_ptr::write(bitptr, true); }
}
assert_eq!(data, !0);
Splits the slice into subslices at alias boundaries.
This splits self
into the memory locations that it partially fills and
the memory locations that it completely fills. The locations that are
completely filled may be accessed without any bitvec
-imposed alias
conditions, while the locations that are only partially filled are left
unchanged.
You can read more about the BitDomain
splitting in its
documentation.
Examples
use bitvec::prelude::*;
let mut data = [0u16; 3];
let all = data.view_bits_mut::<Msb0>();
let (_, rest) = all.split_at_mut(8);
let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
let (head, body, tail) = bits
.bit_domain()
.region()
.unwrap();
assert_eq!(head.len(), 8);
assert_eq!(tail.len(), 8);
let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
let _: &BitSlice<Msb0, u16> = body;
Splits the slice into subslices at alias boundaries.
This splits self
into the memory locations that it partially fills and
the memory locations that it completely fills. The locations that are
completely filled may be accessed without any bitvec
-imposed alias
conditions, while the locations that are only partially filled are left
unchanged.
You can read more about the BitDomainMut
splitting in its
documentation.
Examples
use bitvec::prelude::*;
let mut data = [0u16; 3];
let all = data.view_bits_mut::<Msb0>();
let (_, rest) = all.split_at_mut(8);
let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias>
= &mut rest[.. 32];
let (head, body, tail) = bits
.bit_domain_mut()
.region()
.unwrap();
assert_eq!(head.len(), 8);
assert_eq!(tail.len(), 8);
let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
let _: &mut BitSlice<Msb0, u16> = body;
Views the underlying memory containing the slice, split at alias boundaries.
This splits self
into the memory locations that it partially fills and
the memory locatinos that it completely fills. The locations that are
completely filled may be accessed without any bitvec
-imposed alias
conditions, while the locations that are only partially filled are left
unchanged.
You can read more about the Domain
splitting in its documentation.
Examples
use bitvec::prelude::*;
let mut data = [0u16; 3];
let all = data.view_bits_mut::<Msb0>();
let (_, rest) = all.split_at_mut(8);
let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
let (head, body, tail) = bits
.domain()
.region()
.unwrap();
assert_eq!(body.len(), 1);
let _: &<u16 as BitStore>::Alias = head.unwrap().1;
let _: &<u16 as BitStore>::Alias = tail.unwrap().0;
let _: &[u16] = body;
Views the underlying memory containing the slice, split at alias boundaries.
This splits self
into the memory locations that it partially fills and
the memory locations that it completely fills. The locations that are
completely filled may be accessed without any bitvec
-imposed alias
conditions, while the locations that are only partially filled are left
unchanged.
You can read more about the DomainMut
splitting in its
documentation.
Examples
use bitvec::prelude::*;
let mut data = [0u16; 3];
let all = data.view_bits_mut::<Msb0>();
let (_, rest) = all.split_at_mut(8);
let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = &mut rest[.. 32];
let (head, body, tail) = bits
.domain_mut()
.region()
.unwrap();
assert_eq!(body.len(), 1);
let _: &<<u16 as BitStore>::Alias as BitStore>::Access = head.unwrap().1;
let _: &<<u16 as BitStore>::Alias as BitStore>::Access = tail.unwrap().0;
let _: &mut [u16] = body;
Views the underlying memory containing the slice.
The returned slice handle views all elements touched by self
, and
marks them all with self
’s current aliasing state. For a more precise
view, or one that permits mutation, use .domain()
or
.domain_mut()
.
Splits a mutable slice at some mid-point.
This method has the same behavior as .split_at_mut()
, except that it
does not apply an aliasing marker to the partitioned subslices.
Safety
Because this method is defined only on BitSlice
s whose T
type is
alias-safe, the subslices do not need to be additionally marked.
Trait Implementations
Performs the conversion.
impl<O, V, Rhs> BitAndAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitAndAssign<Rhs>,
impl<O, V, Rhs> BitAndAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitAndAssign<Rhs>,
Performs the &=
operation. Read more
Loads from self
, using little-endian element T
ordering. Read more
Loads from self
, using big-endian element T
ordering. Read more
Stores into self
, using little-endian element ordering. Read more
Stores into self
, using big-endian element ordering. Read more
Loads the bits in the self
region into a local value. Read more
impl<O, V, Rhs> BitOrAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitOrAssign<Rhs>,
impl<O, V, Rhs> BitOrAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitOrAssign<Rhs>,
Performs the |=
operation. Read more
impl<O, V, Rhs> BitXorAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitXorAssign<Rhs>,
impl<O, V, Rhs> BitXorAssign<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitXorAssign<Rhs>,
Performs the ^=
operation. Read more
Immutably borrows from an owned value. Read more
fn borrow_mut(&mut self) -> &mut BitSlice<O, V::Store>ⓘ
fn borrow_mut(&mut self) -> &mut BitSlice<O, V::Store>ⓘ
Mutably borrows from an owned value. Read more
type IntoIter = <&'a BitSlice<O, V::Store> as IntoIterator>::IntoIter
type IntoIter = <&'a BitSlice<O, V::Store> as IntoIterator>::IntoIter
Which kind of iterator are we turning this into?
type Item = <&'a BitSlice<O, V::Store> as IntoIterator>::Item
type Item = <&'a BitSlice<O, V::Store> as IntoIterator>::Item
The type of the elements being iterated over.
type IntoIter = <&'a mut BitSlice<O, V::Store> as IntoIterator>::IntoIter
type IntoIter = <&'a mut BitSlice<O, V::Store> as IntoIterator>::IntoIter
Which kind of iterator are we turning this into?
type Item = <&'a mut BitSlice<O, V::Store> as IntoIterator>::Item
type Item = <&'a mut BitSlice<O, V::Store> as IntoIterator>::Item
The type of the elements being iterated over.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl<O, V, Rhs> PartialOrd<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
Rhs: ?Sized,
BitSlice<O, V::Store>: PartialOrd<Rhs>,
impl<O, V, Rhs> PartialOrd<Rhs> for BitArray<O, V> where
O: BitOrder,
V: BitView,
Rhs: ?Sized,
BitSlice<O, V::Store>: PartialOrd<Rhs>,
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Auto Trait Implementations
impl<O, V> RefUnwindSafe for BitArray<O, V> where
O: RefUnwindSafe,
V: RefUnwindSafe,
impl<O, V> UnwindSafe for BitArray<O, V> where
O: UnwindSafe,
V: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
Causes self
to use its Binary
implementation when Debug
-formatted.
Causes self
to use its Display
implementation when
Debug
-formatted. Read more
Causes self
to use its LowerExp
implementation when
Debug
-formatted. Read more
Causes self
to use its LowerHex
implementation when
Debug
-formatted. Read more
Causes self
to use its Octal
implementation when Debug
-formatted.
Causes self
to use its Pointer
implementation when
Debug
-formatted. Read more
Causes self
to use its UpperExp
implementation when
Debug
-formatted. Read more
Causes self
to use its UpperHex
implementation when
Debug
-formatted. Read more
Pipes by value. This is generally the method you want to use. Read more
Borrows self
and passes that borrow into the pipe function. Read more
Mutably borrows self
and passes that borrow into the pipe function. Read more
Borrows self
, then passes self.borrow()
into the pipe function. Read more
Mutably borrows self
, then passes self.borrow_mut()
into the pipe
function. Read more
Borrows self
, then passes self.as_ref()
into the pipe function.
Mutably borrows self
, then passes self.as_mut()
into the pipe
function. Read more
Borrows self
, then passes self.deref()
into the pipe function.
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
Pipes a dereference into a function that cannot normally be called in suffix position. Read more
Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more
Immutable access to the Borrow<B>
of a value. Read more
Mutable access to the BorrowMut<B>
of a value. Read more
Immutable access to the AsRef<R>
view of a value. Read more
Mutable access to the AsMut<R>
view of a value. Read more
Immutable access to the Deref::Target
of a value. Read more
Mutable access to the Deref::Target
of a value. Read more
Calls .tap()
only in debug builds, and is erased in release builds.
Calls .tap_mut()
only in debug builds, and is erased in release
builds. Read more
Calls .tap_borrow()
only in debug builds, and is erased in release
builds. Read more
Calls .tap_borrow_mut()
only in debug builds, and is erased in release
builds. Read more
Calls .tap_ref()
only in debug builds, and is erased in release
builds. Read more
Calls .tap_ref_mut()
only in debug builds, and is erased in release
builds. Read more
Calls .tap_deref()
only in debug builds, and is erased in release
builds. Read more
Provides immutable access to the reference for inspection.
Calls tap_ref
in debug builds, and does nothing in release builds.
Provides mutable access to the reference for modification.
Calls tap_ref_mut
in debug builds, and does nothing in release builds.
Provides immutable access to the borrow for inspection. Read more
Calls tap_borrow
in debug builds, and does nothing in release builds.
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
Provides mutable access to the borrow for modification.
Immutably dereferences self
for inspection.
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
Calls tap_deref
in debug builds, and does nothing in release builds.
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
Mutably dereferences self
for modification.