1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/*! A dynamically-sized view into individual bits of a memory region.
You can read the language’s [`slice` module documentation][std] here.
This module defines the [`BitSlice`] region, and all of its associated support
code.
[`BitSlice`] is the primary working type of this crate. It is a wrapper type
over `[T]` which enables you to view, manipulate, and take the address of
individual bits in memory. It behaves in every possible respect exactly like an
ordinary slice: it is dynamically-sized, and must be held by `&` or `&mut`
reference, just like `[T]`, and implements every inherent method and trait that
`[T]` does, to the absolute limits of what Rust permits.
The key to [`BitSlice`]’s powerful capability is that references to it use a
special encoding that store, in addition to the address of the base element and
the bit length, the index of the starting bit in the base element. This custom
reference encoding has some costs in what APIs are possible – for instance, Rust
forbids it from supporting `&mut BitSlice[index] = bool` write indexing – but in
exchange, enables it to be *far* more capable than any other bit-slice crate in
existence.
Because of the volume of code that must be written to match the `[T]` standard
API, this module is organized very differently than the slice implementation in
the [`core`] and [`std`] distribution libraries.
- the root module `slice` contains new APIs that have no counterpart in `[T]`
- `slice/api` contains reïmplementations of the `[T]` inherent methods
- `slice/iter` implements all of the iteration capability
- `slice/ops` implements the traits in `core::ops`
- `slice/proxy` implements the proxy reference used in place of `&mut bool`
- `slice/traits` implements all other traits not in `core::ops`
- lastly, `slice/tests` contains all the unit tests.
[`BitSlice`]: struct.BitSlice.html
[`core`]: core
[`std`]: std
[std]: https://doc.rust-lang.org/stable/std/slice
!*/
use crate::{
access::{
BitAccess,
BitSafe,
},
devel as dvl,
domain::{
BitDomain,
BitDomainMut,
Domain,
DomainMut,
},
index::BitMask,
mem::{
BitMemory,
BitRegister,
},
mutability::{
Const,
Mut,
},
order::{
BitOrder,
Lsb0,
Msb0,
},
ptr::{
BitPtr,
BitPtrRange,
BitRef,
BitSpan,
BitSpanError,
},
store::BitStore,
};
use core::{
marker::PhantomData,
ops::RangeBounds,
ptr,
slice,
};
use funty::IsInteger;
#[cfg(feature = "alloc")]
use crate::{
ptr::Address,
vec::BitVec,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "alloc")]
use core::mem::ManuallyDrop;
#[cfg(feature = "alloc")]
use tap::pipe::Pipe;
/** A slice of individual bits, anywhere in memory.
`BitSlice<O, T>` is an unsized region type; you interact with it through
`&BitSlice<O, T>` and `&mut BitSlice<O, T>` references, which work exactly like
all other Rust references. As with the standard slice’s relationship to arrays
and vectors, this is [`bitvec`]’s primary working type, but you will probably
hold it through one of the provided [`BitArray`], [`BitBox`], or [`BitVec`]
containers.
`BitSlice` is conceptually a `[bool]` slice, and provides a nearly complete
mirror of `[bool]`’s API.
Every bit-vector crate can give you an opaque type that hides shift/mask
calculations from you. `BitSlice` does far more than this: it offers you the
full Rust guarantees about reference behavior, including lifetime tracking,
mutability and aliasing awareness, and explicit memory control, *as well as* the
full set of tools and APIs available to the standard `[bool]` slice type.
`BitSlice` can arbitrarily split and subslice, just like `[bool]`. You can write
a linear consuming function and keep the patterns you already know.
For example, to trim all the bits off either edge that match a condition, you
could write
```rust
use bitvec::prelude::*;
fn trim<O: BitOrder, T: BitStore>(
bits: &BitSlice<O, T>,
to_trim: bool,
) -> &BitSlice<O, T> {
let stop = |b: &bool| *b != to_trim;
let front = bits.iter().by_ref().position(stop).unwrap_or(0);
let back = bits.iter().by_ref().rposition(stop).unwrap_or(0);
&bits[front ..= back]
}
# assert_eq!(trim(bits![0, 0, 1, 1, 0, 1, 0], false), bits![1, 1, 0, 1]);
```
to get behavior something like
`trim(&BitSlice[0, 0, 1, 1, 0, 1, 0], false) == &BitSlice[1, 1, 0, 1]`.
# Documentation
All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.
These sections look like this:
# Original
[`slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html)
# API Differences
The slice type `[bool]` has no type parameters. `BitSlice<O, T>` has two: one
for the memory type used as backing storage, and one for the order of bits
within that memory type.
`&BitSlice<O, T>` is capable of producing `&bool` references to read bits out
of its memory, but is not capable of producing `&mut bool` references to write
bits *into* its memory. Any `[bool]` API that would produce a `&mut bool` will
instead produce a [`BitRef<Mut, O, T>`] proxy reference.
# Behavior
`BitSlice` is a wrapper over `[T]`. It describes a region of memory, and must be
handled indirectly. This is most commonly through the reference types
`&BitSlice` and `&mut BitSlice`, which borrow memory owned by some other value
in the program. These buffers can be directly owned by the sibling types
[`BitBox`], which behaves like [`Box<[T]>`](alloc::boxed::Box), and [`BitVec`],
which behaves like [`Vec<T>`]. It cannot be used as the type parameter to a
standard-library-provided handle type.
The `BitSlice` region provides access to each individual bit in the region, as
if each bit had a memory address that you could use to dereference it. It packs
each logical bit into exactly one bit of storage memory, just like
[`std::bitset`] and [`std::vector<bool>`] in C++.
# Type Parameters
`BitSlice` has two type parameters which propagate through nearly every public
API in the crate. These are very important to its operation, and your choice
of type arguments informs nearly every part of this library’s behavior.
## `T: BitStore`
[`BitStore`] is the simpler of the two parameters. It refers to the integer type
used to hold bits. It must be one of the Rust unsigned integer fundamentals:
`u8`, `u16`, `u32`, `usize`, and on 64-bit systems only, `u64`. In addition, it
can also be an alias-safed wrapper over them (see the [`access`] module) in
order to permit bit-slices to share underlying memory without interfering with
each other.
`BitSlice` references can only be constructed over the integers, not over their
aliasing wrappers. `BitSlice` will only use aliasing types in its `T` slots when
you invoke APIs that produce them, such as [`.split_at_mut()`].
The default type argument is `usize`.
The argument you choose is used as the basis of a `[T]` slice, over which the
`BitSlice` view type is placed. `BitSlice<_, T>` is subject to all of the rules
about alignment that `[T]` is. If you are working with in-memory representation
formats, chances are that you already have a `T` type with which you’ve been
working, and should use it here.
If you are only using this crate to discard the seven wasted bits per `bool`
of a collection of `bool`s, and are not too concerned about the in-memory
representation, then you should use the default type argument of `usize`. This
is because most processors work best when moving an entire `usize` between
memory and the processor itself, and using a smaller type may cause it to slow
down.
## `O: BitOrder`
[`BitOrder`] is the more complex parameter. It has a default argument which,
like `usize`, is the good-enough choice when you do not explicitly need to
control the representation of bits in memory.
This parameter determines how to index the bits within a single memory element
`T`. Computers all agree that in a slice of elements `T`, the element with the
lower index has a lower memory address than the element with the higher index.
But the individual bits within an element do not have addresses, and so there is
no uniform standard of which bit is the zeroth, which is the first, which is the
penultimate, and which is the last.
To make matters even more confusing, there are two predominant ideas of
in-element ordering that often *correlate* with the in-element *byte* ordering
of integer types, but are in fact wholly unrelated! [`bitvec`] provides these
two main orders as types for you, and if you need a different one, it also
provides the tools you need to make your own.
### Least Significant Bit Comes First
This ordering, named the [`Lsb0`] type, indexes bits within an element by
placing the `0` index at the least significant bit (numeric value `1`) and the
final index at the most significant bit (numeric value [`T::MIN`][minval] for
signed integers on most machines).
For example, this is the ordering used by most C compilers to lay out bit-field
struct members on little-endian **byte**-ordered machines.
### Most Significant Bit Comes First
This ordering, named the [`Msb0`] type, indexes bits within an element by
placing the `0` index at the most significant bit (numeric value
[`T::MIN`][minval] for most signed integers) and the final index at the least
significant bit (numeric value `1`).
For example, this is the ordering used by the [TCP wire format], and by most C
compilers to lay out bit-field struct members on big-endian **byte**-ordered
machines.
### Default Ordering
The default ordering is [`Lsb0`], as it typically produces shorter object code
than [`Msb0`] does. If you are implementing a collection, then `Lsb0` is likely
the more performant ordering; if you are implementing a buffer protocol, then
your choice of ordering is dictated by the protocol definition.
# Safety
`BitSlice` is designed to never introduce new memory unsafety that you did not
provide yourself, either before or during the use of this crate. Bugs do, and
have, occured, and you are encouraged to submit any discovered flaw as a defect
report.
The `&BitSlice` reference type uses a private encoding scheme to hold all the
information needed in its stack value. This encoding is **not** part of the
public API of the library, and is not binary-compatible with `&[T]`.
Furthermore, in order to satisfy Rust’s requirements about alias conditions,
`BitSlice` performs type transformations on the `T` parameter to ensure that it
never creates the potential for undefined behavior.
You must never attempt to type-cast a reference to `BitSlice` in any way. You
must not use [`mem::transmute`] with `BitSlice` anywhere in its type arguments.
You must not use `as`-casting to convert between `*BitSlice` and any other type.
You must not attempt to modify the binary representation of a `&BitSlice`
reference value. These actions will all lead to runtime memory unsafety, are
(hopefully) likely to induce a program crash, and may possibly cause undefined
behavior at compile-time.
Everything in the `BitSlice` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety than their equivalent parts in the standard library.
All `unsafe` APIs will have documentation explicitly detailing what the API
requires you to uphold in order for it to function safely and correctly. All
safe APIs will do so themselves.
# Performance
Like the standard library’s `[T]` slice, `BitSlice` is designed to be very easy
to use safely, while supporting `unsafe` when necessary. Rust has a powerful
optimizing engine, and `BitSlice` will frequently be compiled to have zero
runtime cost. Where it is slower, it will not be significantly slower than a
manual replacement.
As the machine instructions operate on registers rather than bits, your choice
of [`T: BitStore`] type parameter can influence your slice’s performance. Using
larger register types means that slices can gallop over completely-filled
interior elements faster, while narrower register types permit more graceful
handling of subslicing and aliased splits.
# Construction
`BitSlice` views of memory can be constructed over borrowed data in a number of
ways. As this is a reference-only type, it can only ever be built by borrowing
an existing memory buffer and taking temporary control of your program’s view of
the region.
## Macro Constructor
`BitSlice` buffers can be constructed at compile-time through the [`bits!`]
macro. This macro accepts a superset of the [`vec!`] arguments, and creates an
appropriate buffer in the local scope. The macro expands to a borrowed
[`BitArray`] temporary; currently, it cannot be assigned to a `static` binding.
```rust
use bitvec::prelude::*;
let immut = bits![Lsb0, u8; 0, 1, 0, 0, 1, 0, 0, 1];
let mutable: &mut BitSlice<_, _> = bits![mut Msb0, u8; 0; 8];
assert_ne!(immut, mutable);
mutable.clone_from_bitslice(immut);
assert_eq!(immut, mutable);
```
## Borrowing Constructors
The functions [`from_element`], [`from_element_mut`], [`from_slice`], and
[`from_slice_mut`] take references to existing memory, and construct
`BitSlice` references over them. These are the most basic ways to borrow memory
and view it as bits.
```rust
use bitvec::prelude::*;
let data = [0u16; 3];
let local_borrow = BitSlice::<Lsb0, _>::from_slice(&data);
let mut data = [0u8; 5];
let local_mut = BitSlice::<Lsb0, _>::from_slice_mut(&mut data);
```
## Trait Method Constructors
The [`BitView`] trait implements [`.view_bits::<O>()`] and
[`.view_bits_mut::<O>()`] methods on elements, arrays not larger than 64
elements, and slices. This trait, imported in the crate prelude, is *probably*
the easiest way for you to borrow memory.
```rust
use bitvec::prelude::*;
let data = [0u32; 5];
let trait_view = data.view_bits::<Lsb0>();
let mut data = 0usize;
let trait_mut = data.view_bits_mut::<Msb0>();
```
## Owned Bit Slices
If you wish to take ownership of a memory region and enforce that it is always
viewed as a `BitSlice` by default, you can use one of the [`BitArray`],
[`BitBox`], or [`BitVec`] types, rather than pairing ordinary buffer types with
the borrowing constructors.
```rust
use bitvec::prelude::*;
let slice = bits![0; 27];
let array = bitarr![LocalBits, u8; 0; 10];
# #[cfg(feature = "alloc")] fn allocs() {
let boxed = bitbox![0; 10];
let vec = bitvec![0; 20];
# } #[cfg(feature = "alloc")] allocs();
// arrays always round up
assert_eq!(array.as_bitslice(), slice[.. 16]);
# #[cfg(feature = "alloc")] fn allocs2() {
# let slice = bits![0; 27];
# let boxed = bitbox![0; 10];
# let vec = bitvec![0; 20];
assert_eq!(boxed.as_bitslice(), slice[.. 10]);
assert_eq!(vec.as_bitslice(), slice[.. 20]);
# } #[cfg(feature = "alloc")] allocs2();
```
[TCP wire format]: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
[minval]: https://doc.rust-lang.org/stable/std/primitive.usize.html#associatedconstant.MIN
[`BitArray`]: crate::array::BitArray
[`BitBox`]: crate::boxed::BitBox
[`BitRef<Mut, O, T>`]: crate::ptr::BitRef
[`BitOrder`]: crate::order::BitOrder
[`BitStore`]: crate::store::BitStore
[`BitVec`]: crate::vec::BitVec
[`BitView`]: crate::view::BitView
[`Cell<T>`]: core::cell::Cell
[`Lsb0`]: crate::order::Lsb0
[`Msb0`]: crate::order::Msb0
[`T: BitStore`]: crate::store::BitStore
[`Vec<T>`]: alloc::vec::Vec
[`access`]: crate::access
[`bits!`]: macro@crate::bits
[`bitvec`]: crate
[`bitvec::prelude::LocalBits`]: crate::order::LocalBits
[`from_element`]: Self::from_element
[`from_element_mut`]: Self::from_element_mut
[`from_slice`]: Self::from_slice
[`from_slice_mut`]: Self::from_slice_mut
[`mem::transmute`]: core::mem::transmute
[`std::bitset`]: https://en.cppreference.com/w/cpp/utility/bitset
[`std::vector<bool>`]: https://en.cppreference.com/w/cpp/container/vector_bool
[`vec!`]: macro@alloc::vec
[`.split_at_mut()`]: Self::split_at_mut
[`.view_bits::<O>()`]: crate::view::BitView::view_bits
[`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
**/
#[repr(transparent)]
pub struct BitSlice<O = Lsb0, T = usize>
where
O: BitOrder,
T: BitStore,
{
/// The ordering of bits within a register `T`.
_ord: PhantomData<O>,
/// The register type used for storage.
_typ: PhantomData<[T]>,
/// Indicate that this is a newtype wrapper over a wholly-untyped slice.
///
/// This is necessary in order for the Rust compiler to remove restrictions
/// on the possible values of references to this slice `&BitSlice` and
/// `&mut BitSlice`.
///
/// Rust has firm requirements that *any* reference that is directly usable
/// to dereference a real value must conform to its rules about address
/// liveness, type alignment, and for slices, trustworthy length. It is
/// undefined behavior for a slice reference *to a dereferencable type* to
/// violate any of these restrictions.
///
/// However, the value of a reference to a zero-sized type has *no* such
/// restrictions, because that reference can never perform direct memory
/// access. The compiler will accept any value in a slot typed as `&[()]`,
/// because the values in it will never be used for a load or store
/// instruction. If this were `[T]`, then Rust would make the pointer
/// encoding used to manage values of `&BitSlice` become undefined behavior.
///
/// See the `ptr` module for information on the encoding used.
_mem: [()],
}
/// General-purpose functions not present on `[T]`.
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Constructs a shared `&BitSlice` reference over a shared element.
///
/// The [`BitView`] trait, implemented on all [`BitStore`] implementors,
/// provides a method [`.view_bits::<O>()`] which delegates to this function
/// and may be more convenient for you to write.
///
/// # Parameters
///
/// - `elem`: A shared reference to a memory element.
///
/// # Returns
///
/// A shared `&BitSlice` over the `elem` element.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let elem = 0u8;
/// let bits = BitSlice::<Lsb0, _>::from_element(&elem);
/// assert_eq!(bits.len(), 8);
/// ```
///
/// [`BitStore`]: crate::store::BitStore
/// [`BitView`]: crate::view::BitView
/// [`.view_bits::<O>()`]: crate::view::BitView::view_bits
pub fn from_element(elem: &T) -> &Self {
unsafe { BitPtr::from_ref(elem).span_unchecked(T::Mem::BITS as usize) }
.to_bitslice_ref()
}
/// Constructs an exclusive `&mut BitSlice` reference over an element.
///
/// The [`BitView`] trait, implemented on all [`BitStore`] implementors,
/// provides a method [`.view_bits_mut::<O>()`] which delegates to this
/// function and may be more convenient for you to write.
///
/// # Parameters
///
/// - `elem`: An exclusive reference to a memory element.
///
/// # Returns
///
/// An exclusive `&mut BitSlice` over the `elem` element.
///
/// Note that the original `elem` reference will be inaccessible for the
/// duration of the returned slice handle’s lifetime.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut elem = 0u16;
/// let bits = BitSlice::<Msb0, _>::from_element_mut(&mut elem);
/// bits.set(15, true);
/// assert!(bits.get(15).unwrap());
/// assert_eq!(elem, 1);
/// ```
///
/// [`BitStore`]: crate::store::BitStore
/// [`BitView`]: crate::view::BitView
/// [`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
pub fn from_element_mut(elem: &mut T) -> &mut Self {
unsafe { BitPtr::from_mut(elem).span_unchecked(T::Mem::BITS as usize) }
.to_bitslice_mut()
}
/// Constructs a shared `&BitSlice` reference over a slice.
///
/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
/// method [`.view_bits::<O>()`] which delegates to this function and may be
/// more convenient for you to write.
///
/// # Parameters
///
/// - `slice`: A shared reference over a sequence of memory elements.
///
/// # Returns
///
/// A `&BitSlice` view of the provided slice. The error condition is only
/// encountered if the source slice is too long to be encoded in a
/// `&BitSlice` handle, but such a slice is likely impossible to produce
/// without causing errors long before calling this function.
///
/// # Conditions
///
/// The produced `&BitSlice` handle always begins at the zeroth bit of the
/// zeroth element in `slice`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let slice = &[0u8, 1];
/// let bits = BitSlice::<Msb0, _>::from_slice(slice).unwrap();
/// assert!(bits[15]);
/// ```
///
/// An example showing this function failing would require a slice exceeding
/// `!0usize >> 3` bytes in size, which is infeasible to produce.
///
/// [`BitView`]: crate::view::BitView
/// [`MAX_ELTS`]: Self::MAX_ELTS
/// [`.view_bits::<O>()`]: crate::view::BitView::view_bits
pub fn from_slice(slice: &[T]) -> Result<&Self, BitSpanError<T>> {
let elts = slice.len();
// Starting at the zeroth bit makes this counter an exclusive cap, not
// an inclusive cap. This is also pretty much impossible to hit.
if elts >= Self::MAX_ELTS {
return Err(BitSpanError::TooLong(
elts.saturating_mul(T::Mem::BITS as usize),
));
}
Ok(unsafe { Self::from_slice_unchecked(slice) })
}
/// Constructs an exclusive `&mut BitSlice` reference over a slice.
///
/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
/// method [`.view_bits_mut::<O>()`] which delegates to this function and
/// may be more convenient for you to write.
///
/// # Parameters
///
/// - `slice`: An exclusive reference over a sequence of memory elements.
///
/// # Returns
///
/// A `&mut BitSlice` view of the provided slice. The error condition is
/// only encountered if the source slice is too long to be encoded in a
/// `&mut BitSlice` handle, but such a slice is likely impossible to produce
/// without causing errors long before calling this function.
///
/// Note that the original `slice` reference will be inaccessible for the
/// duration of the returned slice handle’s lifetime.
///
/// # Conditions
///
/// The produced `&mut BitSlice` handle always begins at the zeroth bit of
/// the zeroth element in `slice`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut slice = [0u8; 2];
/// let bits = BitSlice::<Lsb0, _>::from_slice_mut(&mut slice).unwrap();
///
/// assert!(!bits[0]);
/// bits.set(0, true);
/// assert!(bits[0]);
/// assert_eq!(slice[0], 1);
/// ```
///
/// This example attempts to construct a `&mut BitSlice` handle from a slice
/// that is too large to index. Either the `vec!` allocation will fail, or
/// the bit-slice constructor will fail.
///
/// ```rust,should_panic
/// # #[cfg(feature = "alloc")] {
/// use bitvec::prelude::*;
///
/// let mut data = vec![0usize; BitSlice::<Lsb0, usize>::MAX_ELTS];
/// let bits = BitSlice::<Lsb0, _>::from_slice_mut(&mut data[..]).unwrap();
/// # }
/// # #[cfg(not(feature = "alloc"))] panic!("No allocator present");
/// ```
///
/// [`BitView`]: crate::view::BitView
/// [`MAX_ELTS`]: Self::MAX_ELTS
/// [`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
pub fn from_slice_mut(
slice: &mut [T],
) -> Result<&mut Self, BitSpanError<T>> {
let elts = slice.len();
if elts >= Self::MAX_ELTS {
return Err(BitSpanError::TooLong(
elts.saturating_mul(T::Mem::BITS as usize),
));
}
Ok(unsafe { Self::from_slice_unchecked_mut(slice) })
}
/// Converts a slice reference into a `BitSlice` reference without checking
/// that its size can be safely used.
///
/// # Safety
///
/// If the `slice` length is longer than [`MAX_ELTS`], then the returned
/// `BitSlice` will have its length severely truncated. This is not a safety
/// violation, but it is behavior that callers must avoid to remain correct.
///
/// Prefer [`::from_slice()`].
///
/// [`MAX_ELTS`]: Self::MAX_ELTS
/// [`::from_slice()`]: Self::from_slice
pub unsafe fn from_slice_unchecked(slice: &[T]) -> &Self {
let bits = slice.len().wrapping_mul(T::Mem::BITS as usize);
BitPtr::from_slice(slice)
.span_unchecked(bits)
.to_bitslice_ref()
}
/// Converts a slice reference into a `BitSlice` reference without checking
/// that its size can be safely used.
///
/// # Safety
///
/// If the `slice` length is longer than [`MAX_ELTS`], then the returned
/// `BitSlice` will have its length severely truncated. This is not a safety
/// violation, but it is behavior that callers must avoid to remain correct.
///
/// Prefer [`::from_slice_mut()`].
///
/// [`MAX_ELTS`]: Self::MAX_ELTS
/// [`::from_slice_mut()`]: Self::from_slice_mut
pub unsafe fn from_slice_unchecked_mut(slice: &mut [T]) -> &mut Self {
let bits = slice.len().wrapping_mul(T::Mem::BITS as usize);
BitPtr::from_mut_slice(slice)
.span_unchecked(bits)
.to_bitslice_mut()
}
/// Produces the empty slice reference.
///
/// This is equivalent to `&[]` for ordinary slices.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits: &BitSlice = BitSlice::empty();
/// assert!(bits.is_empty());
/// ```
pub fn empty<'a>() -> &'a Self {
BitSpan::<Const, O, T>::EMPTY.to_bitslice_ref()
}
/// Produces the empty mutable slice reference.
///
/// This is equivalent to `&mut []` for ordinary slices.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits: &mut BitSlice = BitSlice::empty_mut();
/// assert!(bits.is_empty());
/// ```
pub fn empty_mut<'a>() -> &'a mut Self {
BitSpan::EMPTY.to_bitslice_mut()
}
/// Writes a new bit at a given index.
///
/// # Parameters
///
/// - `&mut self`
/// - `index`: The bit index at which to write. It must be in the range `0
/// .. self.len()`.
/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
///
/// # Effects
///
/// If `index` is valid, then the bit to which it refers is set to `value`.
///
/// # Panics
///
/// This method panics if `index` is not less than [`self.len()`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![mut 0];
///
/// assert!(!bits[0]);
/// bits.set(0, true);
/// assert!(bits[0]);
/// ```
///
/// This example panics when it attempts to set a bit that is out of bounds.
///
/// ```rust,should_panic
/// use bitvec::prelude::*;
///
/// let bits = bits![mut 0];
/// bits.set(1, false);
/// ```
///
/// [`self.len()`]: Self::len
pub fn set(&mut self, index: usize, value: bool) {
self.assert_in_bounds(index);
unsafe {
self.set_unchecked(index, value);
}
}
/// Writes a new bit at a given index.
///
/// This method supports writing through a shared reference to a bit that
/// may be observed by other `BitSlice` handles. It is only present when the
/// `T` type parameter supports such shared mutation (measured by the
/// [`Radium`] trait).
///
/// # Parameters
///
/// - `&self`
/// - `index`: The bit index at which to write. It must be in the range `0
/// .. self.len()`.
/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
///
/// # Effects
///
/// If `index` is valid, then the bit to which it refers is set to `value`.
/// If `T` is an [atomic], this will lock the memory bus for the referent
/// address, and may cause stalls.
///
/// # Panics
///
/// This method panics if `index` is not less than [`self.len()`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
/// use core::cell::Cell;
///
/// let byte = Cell::new(0u8);
/// let bits = byte.view_bits::<Msb0>();
/// let bits_2 = bits;
///
/// bits.set_aliased(1, true);
/// assert!(bits_2[1]);
/// ```
///
/// This example panics when it attempts to set a bit that is out of bounds.
///
/// ```rust,should_panic
/// use bitvec::prelude::*;
/// use core::cell::Cell;
///
/// let byte = Cell::new(0u8);
/// let bits = byte.view_bits::<Lsb0>();
/// bits.set_aliased(8, false);
/// ```
///
/// [atomic]: core::sync::atomic
/// [`Radium`]: radium::Radium
/// [`self.len()`]: Self::len
pub fn set_aliased(&self, index: usize, value: bool)
where T: radium::Radium {
self.assert_in_bounds(index);
unsafe {
self.set_aliased_unchecked(index, value);
}
}
/// Tests if *any* bit in the slice is set (logical `∨`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 1
/// ```
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// Whether any bit in the slice domain is set. The empty slice returns
/// `false`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 0];
/// assert!(bits[.. 2].any());
/// assert!(!bits[2 ..].any());
/// ```
pub fn any(&self) -> bool {
match self.domain() {
Domain::Enclave { head, elem, tail } => {
O::mask(head, tail) & elem.load_value() != BitMask::ZERO
},
Domain::Region { head, body, tail } => {
head.map_or(false, |(head, elem)| {
O::mask(head, None) & elem.load_value() != BitMask::ZERO
}) || body.iter().any(|e| e.load_value() != T::Mem::ZERO)
|| tail.map_or(false, |(elem, tail)| {
O::mask(None, tail) & elem.load_value() != BitMask::ZERO
})
},
}
}
/// Tests if *all* bits in the slice domain are set (logical `∧`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 0
/// 1 0 => 0
/// 1 1 => 1
/// ```
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// Whether all bits in the slice domain are set. The empty slice returns
/// `true`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![1, 1, 0, 1];
/// assert!(bits[.. 2].all());
/// assert!(!bits[2 ..].all());
/// ```
pub fn all(&self) -> bool {
match self.domain() {
Domain::Enclave { head, elem, tail } => {
/* Due to a bug in `rustc`, calling `.value()` on the two
`BitMask` types, to use `T::Mem | T::Mem == T::Mem`, causes type
resolution failure and only discovers the
`for<'a> BitOr<&'a Self>` implementation in the trait bounds
`T::Mem: BitMemory: IsUnsigned: BitOr<Self> + for<'a> BitOr<&'a Self>`.
Until this is fixed, routing through the `BitMask`
implementation suffices. The by-val and by-ref operator traits
are at the same position in the bounds chain, making this quite
a strange bug.
*/
!O::mask(head, tail) | elem.load_value() == BitMask::ALL
},
Domain::Region { head, body, tail } => {
head.map_or(true, |(head, elem)| {
!O::mask(head, None) | elem.load_value() == BitMask::ALL
}) && body
.iter()
.map(BitStore::load_value)
.all(|e| e == T::Mem::ALL)
&& tail.map_or(true, |(elem, tail)| {
!O::mask(None, tail) | elem.load_value() == BitMask::ALL
})
},
}
}
/// Tests if *all* bits in the slice are unset (logical `¬∨`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 1
/// 0 1 => 0
/// 1 0 => 0
/// 1 1 => 0
/// ```
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// Whether all bits in the slice domain are unset.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 0];
/// assert!(!bits[.. 2].not_any());
/// assert!(bits[2 ..].not_any());
/// ```
pub fn not_any(&self) -> bool {
!self.any()
}
/// Tests if *any* bit in the slice is unset (logical `¬∧`).
///
/// # Truth Table
///
/// ```text
/// 0 0 => 1
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 0
/// ```
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// Whether any bit in the slice domain is unset.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![1, 1, 0, 1];
/// assert!(!bits[.. 2].not_all());
/// assert!(bits[2 ..].not_all());
/// ```
pub fn not_all(&self) -> bool {
!self.all()
}
/// Tests whether the slice has some, but not all, bits set and some, but
/// not all, bits unset.
///
/// This is `false` if either [`.all()`] or [`.not_any()`] are `true`.
///
/// # Truth Table
///
/// ```text
/// 0 0 => 0
/// 0 1 => 1
/// 1 0 => 1
/// 1 1 => 0
/// ```
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// Whether the slice domain has mixed content. The empty slice returns
/// `false`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0b111_000_10u8;
/// let bits = bits![1, 1, 0, 0, 1, 0];
///
/// assert!(!bits[.. 2].some());
/// assert!(!bits[2 .. 4].some());
/// assert!(bits.some());
/// ```
///
/// [`.all()`]: Self::all
/// [`.not_any()`]: Self::not_any
pub fn some(&self) -> bool {
self.any() && self.not_all()
}
/// Counts the number of bits set to `1` in the slice contents.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// The number of bits in the slice domain that are set to `1`.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![1, 1, 0, 0];
/// assert_eq!(bits[.. 2].count_ones(), 2);
/// assert_eq!(bits[2 ..].count_ones(), 0);
/// ```
pub fn count_ones(&self) -> usize {
match self.domain() {
Domain::Enclave { head, elem, tail } => (O::mask(head, tail)
& elem.load_value())
.value()
.count_ones() as usize,
Domain::Region { head, body, tail } => {
head.map_or(0, |(head, elem)| {
(O::mask(head, None) & elem.load_value())
.value()
.count_ones() as usize
}) + body
.iter()
.map(BitStore::load_value)
.map(|e| e.count_ones() as usize)
.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
(O::mask(None, tail) & elem.load_value())
.value()
.count_ones() as usize
})
},
}
}
/// Counts the number of bits cleared to `0` in the slice contents.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// The number of bits in the slice domain that are cleared to `0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![1, 1, 0, 0];
/// assert_eq!(bits[.. 2].count_zeros(), 0);
/// assert_eq!(bits[2 ..].count_zeros(), 2);
/// ```
pub fn count_zeros(&self) -> usize {
match self.domain() {
Domain::Enclave { head, elem, tail } => (!O::mask(head, tail)
| elem.load_value())
.value()
.count_zeros() as usize,
Domain::Region { head, body, tail } => {
head.map_or(0, |(head, elem)| {
(!O::mask(head, None) | elem.load_value())
.value()
.count_zeros() as usize
}) + body
.iter()
.map(BitStore::load_value)
.map(|e| e.count_zeros() as usize)
.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
(!O::mask(None, tail) | elem.load_value())
.value()
.count_zeros() as usize
})
},
}
}
/// Enumerates all bits in a `BitSlice` that are set to `1`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 0, 1, 0, 0, 0, 1];
/// let mut indices = [1, 4, 8].iter().copied();
///
/// let mut iter_ones = bits.iter_ones();
/// let mut compose = bits.iter()
/// .copied()
/// .enumerate()
/// .filter_map(|(idx, bit)| if bit { Some(idx) } else { None });
///
/// for ((a, b), c) in iter_ones.zip(compose).zip(indices) {
/// assert_eq!(a, b);
/// assert_eq!(b, c);
/// }
/// ```
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn iter_ones(&self) -> IterOnes<O, T> {
IterOnes::new(self)
}
/// Enumerates all bits in a `BitSlice` that are cleared to `0`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![1, 0, 1, 1, 0, 1, 1, 1, 0];
/// let mut indices = [1, 4, 8].iter().copied();
///
/// let mut iter_zeros = bits.iter_zeros();
/// let mut compose = bits.iter()
/// .copied()
/// .enumerate()
/// .filter_map(|(idx, bit)| if !bit { Some(idx) } else { None });
///
/// for ((a, b), c) in iter_zeros.zip(compose).zip(indices) {
/// assert_eq!(a, b);
/// assert_eq!(b, c);
/// }
/// ```
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn iter_zeros(&self) -> IterZeros<O, T> {
IterZeros::new(self)
}
/// Gets the index of the first bit in the bit-slice set to `1`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert!(bits![].first_one().is_none());
/// assert_eq!(bits![0, 0, 1].first_one().unwrap(), 2);
/// ```
#[inline]
pub fn first_one(&self) -> Option<usize> {
self.iter_ones().next()
}
/// Gets the index of the first bit in the bit-slice set to `0`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert!(bits![].first_zero().is_none());
/// assert_eq!(bits![1, 1, 0].first_zero().unwrap(), 2);
/// ```
#[inline]
pub fn first_zero(&self) -> Option<usize> {
self.iter_zeros().next()
}
/// Gets the index of the last bit in the bit-slice set to `1`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert!(bits![].last_one().is_none());
/// assert_eq!(bits![1, 0, 0, 1].last_one().unwrap(), 3);
/// ```
#[inline]
pub fn last_one(&self) -> Option<usize> {
self.iter_ones().next_back()
}
/// Gets the index of the last bit in the bit-slice set to `0`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert!(bits![].last_zero().is_none());
/// assert_eq!(bits![0, 1, 1, 0].last_zero().unwrap(), 3);
/// ```
#[inline]
pub fn last_zero(&self) -> Option<usize> {
self.iter_zeros().next_back()
}
/// Counts the number of bits from the start of the bit-slice to the first
/// bit set to `0`.
///
/// This returns `0` if the bit-slice is empty.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert_eq!(bits![].leading_ones(), 0);
/// assert_eq!(bits![0].leading_ones(), 0);
/// assert_eq!(bits![1, 0, 1, 1].leading_ones(), 1);
/// assert_eq!(bits![1, 1, 1, 1].leading_ones(), 4);
/// ```
#[inline]
pub fn leading_ones(&self) -> usize {
self.first_zero().unwrap_or(self.len())
}
/// Counts the number of bits from the start of the bit-slice to the first
/// bit set to `1`.
///
/// This returns `0` if the bit-slice is empty.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert_eq!(bits![].leading_zeros(), 0);
/// assert_eq!(bits![1].leading_zeros(), 0);
/// assert_eq!(bits![0, 1, 0, 0].leading_zeros(), 1);
/// assert_eq!(bits![0, 0, 0, 0].leading_zeros(), 4);
/// ```
#[inline]
pub fn leading_zeros(&self) -> usize {
self.first_one().unwrap_or(self.len())
}
/// Counts the number of bits from the end of the bit-slice to the last bit
/// set to `0`.
///
/// This returns `0` if the bit-slice is empty.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert_eq!(bits![].trailing_ones(), 0);
/// assert_eq!(bits![0].trailing_ones(), 0);
/// assert_eq!(bits![1, 0, 1, 1].trailing_ones(), 2);
/// ```
#[inline]
pub fn trailing_ones(&self) -> usize {
let len = self.len();
self.last_zero().map(|idx| len - 1 - idx).unwrap_or(len)
}
/// Counts the number of bits from the end of the bit-slice to the last bit
/// set to `1`.
///
/// This returns `0` if the bit-slice is empty.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// assert_eq!(bits![].trailing_zeros(), 0);
/// assert_eq!(bits![1].trailing_zeros(), 0);
/// assert_eq!(bits![0, 1, 0, 0].trailing_zeros(), 2);
/// ```
#[inline]
pub fn trailing_zeros(&self) -> usize {
let len = self.len();
self.last_one().map(|idx| len - 1 - idx).unwrap_or(len)
}
/// Copies the bits from `src` into `self`.
///
/// The length of `src` must be the same as `self.
///
/// If `src` has the same type arguments as `self`, it can be more
/// performant to use [`.copy_from_bitslice()`].
///
/// # Original
///
/// [`slice::clone_from_bitslice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.clone_from_bitslice)
///
/// # API Differences
///
/// This method is renamed, as it takes a bit slice rather than an element
/// slice.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
///
/// Cloning two bits from a slice into another:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let src = bits![Msb0, u16; 1; 4];
/// let dst = bits![mut Lsb0, u8; 0; 2];
///
/// dst.clone_from_bitslice(&src[2 ..]);
/// assert_eq!(dst, bits![1; 2]);
/// ```
///
/// Rust enforces that there can only be one mutable reference with no
/// immutable references to a particular piece of data in a particular
/// scope. Because of this, attempting to use clone_from_slice on a single
/// slice will result in a compile failure:
///
/// ```rust,compile_fail
/// use bitvec::prelude::*;
///
/// let slice = bits![mut 0, 0, 0, 1, 1];
/// slice[.. 2].clone_from_bitslice(&slice[3 ..]); // compile fail!
/// ```
///
/// To work around this, we can use [`.split_at_mut()`] to create two
/// distinct sub-slices from a slice:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let slice = bits![mut 0, 0, 0, 1, 1];
///
/// {
/// let (left, right) = slice.split_at_mut(2);
/// left.clone_from_bitslice(&right[1 ..]);
/// }
///
/// assert_eq!(slice, bits![1, 1, 0, 1, 1]);
/// ```
///
/// # Performance
///
/// If `self` and `src` use the same type arguments, this specializes to
/// [`.copy_from_bitslice()`]; if you know statically that this is the case,
/// prefer to call that method directly and avoid the cost of detection at
/// runtime. Otherwise, this is a bit-by-bit crawl across both slices, which
/// is a slow process.
///
/// [`.copy_from_bitslice()`]: Self::copy_from_bitslice
/// [`.split_at_mut()`]: Self::split_at_mut
pub fn clone_from_bitslice<O2, T2>(&mut self, src: &BitSlice<O2, T2>)
where
O2: BitOrder,
T2: BitStore,
{
assert_eq!(
self.len(),
src.len(),
"Cloning between slices requires equal lengths"
);
if dvl::match_types::<O, T, O2, T2>() {
let that = src as *const _ as *const _;
unsafe {
self.copy_from_bitslice(&*that);
}
}
else {
for (to, from) in unsafe { self.iter_mut().remove_alias() }
.zip(src.iter().by_val())
{
to.set(from);
}
}
}
/// Copies all bits from `src` into `self`, using a memcpy wherever
/// possible.
///
/// The length of `src` must be same as `self`.
///
/// If `src` does not use the same type arguments as `self`, use
/// [`.clone_from_bitslice()`].
///
/// # Original
///
/// [`slice::copy_from_slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.copy_from_slice)
///
/// # API Differences
///
/// This method is renamed, as it takes a bit slice rather than an element
/// slice.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
///
/// Copying two bits from a slice into another:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let src = bits![1; 4];
/// let dst = bits![mut 0; 2];
///
/// // Because the slices have to be the same length,
/// // we slice the source slice from four bits to
/// // two. It will panic if we don't do this.
/// dst.clone_from_bitslice(&src[2..]);
/// ```
///
/// Rust enforces that there can only be one mutable reference with no
/// immutable references to a particular piece of data in a particular
/// scope. Because of this, attempting to use [.copy_from_slice()] on a
/// single slice will result in a compile failure:
///
/// ```rust,compile_fail
/// use bitvec::prelude::*;
///
/// let slice = bits![mut 0, 0, 0, 1, 1];
///
/// slice[.. 2].copy_from_bitslice(&bits[3 ..]); // compile fail!
/// ```
///
/// To work around this, we can use [`.split_at_mut()`] to create two
/// distinct sub-slices from a slice:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let slice = bits![mut 0, 0, 0, 1, 1];
///
/// {
/// let (left, right) = slice.split_at_mut(2);
/// left.copy_from_bitslice(&right[1 ..]);
/// }
///
/// assert_eq!(slice, bits![1, 1, 0, 1, 1]);
/// ```
///
/// [`.clone_from_bitslice()`]: Self::clone_from_bitslice
/// [`.split_at_mut()`]: Self::split_at_mut
pub fn copy_from_bitslice(&mut self, src: &Self) {
assert_eq!(
self.len(),
src.len(),
"Copying between slices requires equal lengths"
);
let (d_head, s_head) =
(self.as_bitspan().head(), src.as_bitspan().head());
// Where the two slices have identical layouts (head index and length),
// the copy can be done by using the memory domains.
if d_head == s_head {
match (self.domain_mut(), src.domain()) {
(
DomainMut::Enclave {
elem: d_elem, tail, ..
},
Domain::Enclave { elem: s_elem, .. },
) => {
let mask = O::mask(d_head, tail);
d_elem.clear_bits(mask);
d_elem.set_bits(mask & s_elem.load_value());
},
(
DomainMut::Region {
head: d_head,
body: d_body,
tail: d_tail,
},
Domain::Region {
head: s_head,
body: s_body,
tail: s_tail,
},
) => {
if let (Some((h_idx, dh_elem)), Some((_, sh_elem))) =
(d_head, s_head)
{
let mask = O::mask(h_idx, None);
dh_elem.clear_bits(mask);
dh_elem.set_bits(mask & sh_elem.load_value());
}
for (dst, src) in d_body.iter_mut().zip(s_body.iter()) {
dst.store_value(src.load_value())
}
if let (Some((dt_elem, t_idx)), Some((st_elem, _))) =
(d_tail, s_tail)
{
let mask = O::mask(None, t_idx);
dt_elem.clear_bits(mask);
dt_elem.set_bits(mask & st_elem.load_value());
}
},
_ => unreachable!(
"Slices with equal type parameters, lengths, and heads \
will always have equal domains"
),
}
}
/* TODO(myrrlyn): Remove this when specialization stabilizes.
This section simulates access to specialization through partial
type-argument application. It detects accelerable type arguments (`O`
values provided by `bitvec`, where `BitSlice<O, _>` implements
`BitField`) and uses their batch load/store behavior to move more than
one bit per cycle.
Without language-level specialization, we cannot dispatch to
individually well-typed functions, so instead this block uses the
compiler’s `TypeId` API to inspect the type arguments passed to a
monomorphization and select the appropriate codegen for it. We know that
control will only enter any of these subsequent blocks when the type
argument to monomorphization matches the guard, so the pointer casts
become the identity function, which is safe and correct.
This is only safe to do in `.copy_from_bitslice()`, not in
`.clone_from_bitslice()`, because `BitField`’s behavior will only be
correct when the two slices are matching in both their ordering and
storage type arguments. Mismatches will cause an observed shuffling of
sections as `BitField` reïnterprets raw bytes according to the machine
register selected.
*/
else if dvl::match_order::<O, Lsb0>() {
let this: &mut BitSlice<Lsb0, T> =
unsafe { &mut *(self as *mut _ as *mut _) };
let that: &BitSlice<Lsb0, T> =
unsafe { &*(src as *const _ as *const _) };
this.sp_copy_from_bitslice(that);
}
else if dvl::match_order::<O, Msb0>() {
let this: &mut BitSlice<Msb0, T> =
unsafe { &mut *(self as *mut _ as *mut _) };
let that: &BitSlice<Msb0, T> =
unsafe { &*(src as *const _ as *const _) };
this.sp_copy_from_bitslice(that);
}
else {
for (ptr, from) in
self.as_mut_bitptr_range().zip(src.iter().by_val())
{
unsafe {
ptr.write(from);
}
}
}
}
/// Swaps all bits in `self` with those in `other`.
///
/// The length of `other` must be the same as `self`.
///
/// # Original
///
/// [`slice::swap_with_slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.swap_with_slice)
///
/// # API Differences
///
/// This method is renamed, as it takes a bit slice rather than an element
/// slice.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut one = [0xA5u8, 0x69];
/// let mut two = 0x1234u16;
/// let one_bits = one.view_bits_mut::<Msb0>();
/// let two_bits = two.view_bits_mut::<Lsb0>();
///
/// one_bits.swap_with_bitslice(two_bits);
///
/// assert_eq!(one, [0x2C, 0x48]);
/// # #[cfg(target_endian = "little")] {
/// assert_eq!(two, 0x96A5);
/// # }
/// ```
pub fn swap_with_bitslice<O2, T2>(&mut self, other: &mut BitSlice<O2, T2>)
where
O2: BitOrder,
T2: BitStore,
{
let len = self.len();
assert_eq!(len, other.len());
for (to, from) in unsafe {
self.iter_mut()
.remove_alias()
.zip(other.iter_mut().remove_alias())
} {
let (this, that) = (*to, *from);
to.set(that);
from.set(this);
}
}
/// Shifts the contents of a bit-slice left (towards index `0`).
///
/// This moves the contents of the slice from `by ..` down to
/// `0 .. len - by`, and erases `len - by ..` to `0`. As this is a
/// destructive (and linearly expensive) operation, you may prefer instead
/// to use range subslicing.
///
/// # Parameters
///
/// - `&mut self`
/// - `by`: The distance by which to shift the slice contents.
///
/// # Panics
///
/// This panics if `by` is not less than `self.len()`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![mut 1; 6];
/// bits.shift_left(2);
/// assert_eq!(bits, bits![1, 1, 1, 1, 0, 0]);
/// ```
pub fn shift_left(&mut self, by: usize) {
let len = self.len();
if by == 0 {
return;
}
assert!(
by < len,
"Cannot shift a slice by more than its length: {} exceeds {}",
by,
len
);
unsafe {
self.copy_within_unchecked(by .., 0);
let trunc = len - by;
self.get_unchecked_mut(trunc ..).set_all(false);
}
}
/// Shifts the contents of a bit-slice right (towards index `self.len()`).
///
/// This moves the contents of the slice from `.. len - by` up to `by ..`,
/// and erases `.. by` to `0`. As this is a destructive (and linearly
/// expensive) operation, you may prefer instead to use range subslicing.
///
/// # Parameters
///
/// - `&mut self`
/// - `by`: The distance by which to shift the slice contents.
///
/// # Panics
///
/// This panics if `by` is not less than `self.len()`.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![mut 1; 6];
/// bits.shift_right(2);
/// assert_eq!(bits, bits![0, 0, 1, 1, 1, 1]);
/// ```
pub fn shift_right(&mut self, by: usize) {
let len = self.len();
if by == 0 {
return;
}
assert!(
by < len,
"Cannot shift a slice by more than its length: {} exceeds {}",
by,
len
);
let trunc = len - by;
unsafe {
self.copy_within_unchecked(.. trunc, by);
self.get_unchecked_mut(.. by).set_all(false);
}
}
/// Sets all bits in the slice to a value.
///
/// # Parameters
///
/// - `&mut self`
/// - `value`: The bit value to which all bits in the slice will be set.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut src = 0u8;
/// let bits = src.view_bits_mut::<Msb0>();
/// bits[2 .. 6].set_all(true);
/// assert_eq!(bits.as_slice(), &[0b0011_1100]);
/// bits[3 .. 5].set_all(false);
/// assert_eq!(bits.as_slice(), &[0b0010_0100]);
/// bits[.. 1].set_all(true);
/// assert_eq!(bits.as_slice(), &[0b1010_0100]);
/// ```
pub fn set_all(&mut self, value: bool) {
// Grab the function pointers used to commit bit-masks into memory.
let setter = <T::Access>::get_writers(value);
match self.domain_mut() {
DomainMut::Enclave { head, elem, tail } => {
setter(elem, O::mask(head, tail));
},
DomainMut::Region { head, body, tail } => {
if let Some((head, elem)) = head {
setter(elem, O::mask(head, None));
}
// loop assignment is `memset`’s problem, not ours
unsafe {
ptr::write_bytes(
body.as_mut_ptr(),
[0, !0][value as usize],
body.len(),
);
}
if let Some((elem, tail)) = tail {
setter(elem, O::mask(None, tail));
}
},
}
}
/// Applies a function to each bit in the slice.
///
/// `BitSlice` cannot implement [`IndexMut`], as it cannot manifest `&mut
/// bool` references, and the [`BitRef`] proxy reference has an unavoidable
/// overhead. This method bypasses both problems, by applying a function to
/// each pair of index and value in the slice, without constructing a proxy
/// reference. Benchmarks indicate that this method is about 2–4 times
/// faster than the `.iter_mut().enumerate()` equivalent.
///
/// # Parameters
///
/// - `&mut self`
/// - `func`: A function which receives two arguments, `index: usize` and
/// `value: bool`, and returns a `bool`.
///
/// # Effects
///
/// For each index in the slice, the result of invoking `func` with the
/// index number and current bit value is written into the slice.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = 0u8;
/// let bits = data.view_bits_mut::<Msb0>();
/// bits.for_each(|idx, _bit| idx % 3 == 0);
/// assert_eq!(data, 0b100_100_10);
/// ```
///
/// [`BitRef`]: crate::ptr::BitRef
/// [`IndexMut`]: core::ops::IndexMut
pub fn for_each<F>(&mut self, mut func: F)
where F: FnMut(usize, bool) -> bool {
for idx in 0 .. self.len() {
unsafe {
let tmp = *self.get_unchecked(idx);
let new = func(idx, tmp);
self.set_unchecked(idx, new);
}
}
}
/// Produces the absolute offset in bits between two slice heads.
///
/// While this method is sound for any two arbitrary bit slices, the answer
/// it produces is meaningful *only* when one argument is a strict subslice
/// of the other. If the two slices are created from different buffers
/// entirely, a comparison is undefined; if the two slices are disjoint
/// regions of the same buffer, then the semantically correct distance is
/// between the tail of the lower and the head of the upper, which this
/// does not measure.
///
/// # Visual Description
///
/// Consider the following sequence of bits:
///
/// ```text
/// [ 0 1 2 3 4 5 6 7 8 9 a b ]
/// | ^^^^^^^ |
/// ^^^^^^^^^^^^^^^^^^^^^^^
/// ```
///
/// It does not matter whether there are bits between the tail of the
/// smaller and the larger slices. The offset is computed from the bit
/// distance between the two heads.
///
/// # Behavior
///
/// This function computes the *semantic* distance between the heads, rather
/// than the *electrical. It does not take into account the `BitOrder`
/// implementation of the slice.
///
/// # Safety and Soundness
///
/// One of `self` or `other` must contain the other for this comparison to
/// be meaningful.
///
/// # Parameters
///
/// - `&self`
/// - `other`: Another bit slice. This must be either a strict subregion or
/// a strict superregion of `self`.
///
/// # Returns
///
/// The distance in (semantic) bits betwen the heads of each region. The
/// value is positive when `other` is higher in the address space than
/// `self`, and negative when `other` is lower in the address space than
/// `self`.
pub fn offset_from(&self, other: &Self) -> isize {
unsafe { other.as_bitptr().offset_from(self.as_bitptr()) }
}
#[doc(hidden)]
#[deprecated = "Use `BitPtr::offset_from`"]
pub fn electrical_distance(&self, _other: &Self) -> isize {
unimplemented!(
"This no longer exists! Offsets are only defined between two \
bit-pointers in the same bit-region, and `bitvec` considers two \
regions with different orderings, *even if they cover the same \
locations*, to be different. Use `BitPtr::offset_from`."
);
}
}
/// Unchecked variants of checked accessors.
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Writes a new bit at a given index, without doing bounds checking.
///
/// This is generally not recommended; use with caution! Calling this method
/// with an out-of-bounds index is *[undefined behavior]*. For a safe
/// alternative, see [`.set()`].
///
/// # Parameters
///
/// - `&mut self`
/// - `index`: The bit index at which to write. It must be in the range `0
/// .. self.len()`.
/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
///
/// # Effects
///
/// The bit at `index` is set to `value`. If `index` is out of bounds, then
/// the memory access is incorrect, and its behavior is unspecified.
///
/// # Safety
///
/// This method is **not** safe. It performs raw pointer arithmetic to seek
/// from the start of the slice to the requested index, and set the bit
/// there. It does not inspect the length of `self`, and it is free to
/// perform out-of-bounds memory *write* access.
///
/// Use this method **only** when you have already performed the bounds
/// check, and can guarantee that the call occurs with a safely in-bounds
/// index.
///
/// # Examples
///
/// This example uses a bit slice of length 2, and demonstrates
/// out-of-bounds access to the last bit in the element.
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![mut 0; 2];
/// let (first, _) = bits.split_at_mut(1);
///
/// unsafe {
/// first.set_unchecked(1, true);
/// }
///
/// assert_eq!(bits, bits![0, 1]);
/// ```
///
/// [`self.len()`]: Self::len
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
/// [`.set()`]: Self::set
pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) {
self.as_mut_bitptr().add(index).write(value);
}
/// Writes a new bit at a given index, without doing bounds checking.
///
/// This method supports writing through a shared reference to a bit that
/// may be observed by other `BitSlice` handles. It is only present when the
/// `T` type parameter supports such shared mutation (measured by the
/// [`Radium`] trait).
///
/// # Effects
///
/// The bit at `index` is set to `value`. If `index` is out of bounds, then
/// the memory access is incorrect, and its behavior is unspecified. If `T`
/// is an [atomic], this will lock the memory bus for the referent
/// address, and may cause stalls.
///
/// # Safety
///
/// This method is **not** safe. It performs raw pointer arithmetic to seek
/// from the start of the slice to the requested index, and set the bit
/// there. It does not inspect the length of `self`, and it is free to
/// perform out-of-bounds memory *write* access.
///
/// Use this method **only** when you have already performed the bounds
/// check, and can guarantee that the call occurs with a safely in-bounds
/// index.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
/// use core::cell::Cell;
///
/// let byte = Cell::new(0u8);
/// let bits = byte.view_bits::<Msb0>();
/// let bits_2 = bits;
///
/// let (first, _) = bits.split_at(1);
/// assert_eq!(first.len(), 1);
/// unsafe { first.set_aliased_unchecked(2, true); }
///
/// assert!(bits_2[2]);
/// ```
///
/// [atomic]: core::sync::atomic
/// [`Radium`]: radium::Radium
pub unsafe fn set_aliased_unchecked(&self, index: usize, value: bool)
where T: radium::Radium {
self.as_bitptr().add(index).assert_mut().write(value);
}
/// Swaps two bits in the slice.
///
/// See [`.swap()`].
///
/// # Safety
///
/// `a` and `b` must both be less than [`self.len()`].
///
/// [`self.len()`]: Self::len
/// [`.swap()`]: Self::swap
pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
let bit_a = *self.get_unchecked(a);
let bit_b = *self.get_unchecked(b);
self.set_unchecked(a, bit_b);
self.set_unchecked(b, bit_a);
}
/// Divides one slice into two at an index, without performing any bounds
/// checking.
///
/// See [`.split_at()`].
///
/// # Safety
///
/// `mid` must not be greater than [`self.len()`]. If this condition is
/// violated, the function behavior is *unspecified*.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 0, 0, 1, 1, 1];
/// let (l, r) = unsafe { bits.split_at_unchecked(3) };
/// assert!(l.not_any());
/// assert!(r.all());
///
/// let (l, r) = unsafe { bits.split_at_unchecked(6) };
/// assert_eq!(l, bits);
/// assert!(r.is_empty());
/// ```
///
/// [`self.len()`]: Self::len
/// [`.split_at()`]: Self::split_at
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self) {
(self.get_unchecked(.. mid), self.get_unchecked(mid ..))
}
/// Divides one mutable slice into two at an index.
///
/// See [`.split_at_mut()`].
///
/// # Safety
///
/// `mid` must not be greater than [`self.len()`].
///
/// [`self.len()`]: Self::len
/// [`.split_at_mut()`]: Self::split_at_mut
#[allow(clippy::type_complexity)]
pub unsafe fn split_at_unchecked_mut(
&mut self,
mid: usize,
) -> (&mut BitSlice<O, T::Alias>, &mut BitSlice<O, T::Alias>) {
let bp = self.alias_mut().as_mut_bitspan();
(
bp.to_bitslice_mut().get_unchecked_mut(.. mid),
bp.to_bitslice_mut().get_unchecked_mut(mid ..),
)
}
/// Copies bits from one part of the slice to another part of itself,
/// without doing bounds checks.
///
/// The ranges are allowed to overlap.
///
/// # Parameters
///
/// - `&mut self`
/// - `src`: The range within `self` from which to copy.
/// - `dst`: The starting index within `self` at which to paste.
///
/// # Effects
///
/// `self[src]` is copied to `self[dest .. dest + src.end() - src.start()]`.
///
/// # Safety
///
/// `src` and `dest .. dest + src.len()` must be entirely within
/// [`self.len()`].
///
/// [`self.len()`]: Self::len
pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize)
where R: RangeBounds<usize> {
if dvl::match_order::<O, Lsb0>() {
let this: &mut BitSlice<Lsb0, T> = &mut *(self as *mut _ as *mut _);
this.sp_copy_within_unchecked(src, dest);
}
else if dvl::match_order::<O, Msb0>() {
let this: &mut BitSlice<Msb0, T> = &mut *(self as *mut _ as *mut _);
this.sp_copy_within_unchecked(src, dest);
}
else {
let source = dvl::normalize_range(src, self.len());
let source_len = source.len();
let rev = source.contains(&dest);
let iter = source.zip(dest .. dest + source_len);
if rev {
for (from, to) in iter.rev() {
let bit = *self.get_unchecked(from);
self.set_unchecked(to, bit);
}
}
else {
for (from, to) in iter {
let bit = *self.get_unchecked(from);
self.set_unchecked(to, bit);
}
}
}
}
}
/// View conversions.
#[cfg(not(tarpaulin_include))]
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Returns a raw bit-pointer to the base of the bit-slice’s region.
///
/// The caller must ensure that the bit-slice outlives the bit-pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// The caller must also ensure that the memory the bit-pointer
/// (non-transitively) points to is never written to using this bit-pointer
/// or any bit-pointer derived from it. If you need to mutate the contents
/// of the slice, use [`.as_mut_bitptr()`].
///
/// Modifying the container referenced by this bit-slice may cause its
/// buffer to be reällocated, which would also make any bit-pointers to it
/// invalid.
///
/// # Original
///
/// [`slice::as_ptr`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_ptr)
///
/// # API Differences
///
/// This returns a structure, [`BitPtr`], rather than an actual raw pointer
/// `*Bit`. The information required to address a bit within a memory
/// element cannot be encoded into a single pointer.
///
/// This structure can be converted back into a `&BitSlice` with the
/// function [`from_raw_parts`].
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let x = bits![0, 0, 1];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0 .. x.len() {
/// assert_eq!(*x.get_unchecked(i), (&*x)[i]);
/// }
/// }
/// ```
///
/// [`.as_mut_bitptr()`]: Self::as_mut_bitptr
/// [`from_raw_parts`]: crate::slice::from_raw_parts
#[inline(always)]
pub fn as_bitptr(&self) -> BitPtr<Const, O, T> {
self.as_bitspan().as_bitptr()
}
/// Returns an unsafe mutable bit-pointer to the bit-slice’s region.
///
/// The caller must ensure that the bit-slice outlives the bit-pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the container referenced by this bit-slice may cause its
/// buffer to be reällocated, which would also make any bit-pointers to it
/// invalid.
///
/// # Original
///
/// [`slice::as_mut_ptr`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_mut_ptr)
///
/// # API Differences
///
/// This returns `*mut BitSlice`, which is the equivalont of `*mut [T]`
/// instead of `*mut T`. The pointer encoding used requires more than one
/// CPU word of space to address a single bit, so there is no advantage to
/// removing the length information from the encoded pointer value.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![mut Lsb0, u8; 0; 8];
/// let bits_ptr = bits.as_mut_ptr();
///
/// for i in 0 .. bits.len() {
/// unsafe {
/// bits_ptr.add(i).write(i % 3 == 0);
/// }
/// }
/// assert_eq!(bits.as_slice()[0], 0b0100_1001);
/// ```
#[inline(always)]
pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, O, T> {
self.as_mut_bitspan().as_bitptr()
}
/// Returns the two raw bit-pointers spanning the bit-slice.
///
/// The returned range is half-open, which means that the end bit-pointer
/// points *one past* the last bit of the bit-slice. This way, an empty
/// bit-slice is represented by two equal bit-pointers, and the difference
/// between the two bit-pointers represents the size of the bit-slice.
///
/// See [`as_bitptr`] for warnings on using these bit-pointers. The end
/// bit-pointer requires extra caution, as it does not point to a valid bit
/// in the bit-slice.
///
/// This function allows a more direct access to bit-pointers, without
/// paying the cost of encoding into a `*BitSlice`, at the cost of no longer
/// fitting into ordinary Rust interfaces.
///
/// # Original
///
/// [`slice::as_ptr_range`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_ptr_range)
///
/// # API Differences
///
/// This returns a dedicated structure, rather than a range of [`BitPtr`]s,
/// because the traits needed for non-`core` types to correctly operate in
/// ranges are still unstable. The structure can be converted into a range,
/// but that range will not be an iterator.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 0, 1];
/// let mid_ptr = bits.get(2).unwrap().into_bitptr();
/// let mut range = bits.as_bitptr_range();
/// assert!(range.contains(&mid_ptr));
/// unsafe {
/// assert!(!range.next().unwrap().read());
/// assert!(range.next_back().unwrap().read())
/// }
/// ```
///
/// [`BitPtr`]: crate::ptr::BitPtr
/// [`as_bitptr`]: Self::as_bitptr
pub fn as_bitptr_range(&self) -> BitPtrRange<Const, O, T> {
unsafe { self.as_bitptr().range(self.len()) }
}
/// Returns the two unsafe mutable bit-pointers spanning the bit-slice.
///
/// The returned range is half-open, which means that the end bit-pointer
/// points *one past* the last bitt of the bit-slice. This way, an empty
/// bit-slice is represented by two equal bit-pointers, and the difference
/// between the two bit-pointers represents the size of the bit-slice.
///
/// See [`as_mut_bitptr`] for warnings on using these bit-pointers. The end
/// bit-pointer requires extra caution, as it does not point to a valid bit
/// in the bit-slice.
///
/// # Original
///
/// [`slice::as_mut_ptr_range`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_mut_ptr_range)
///
/// # API Differences
///
/// This returns a dedicated structure, rather than a range of [`BitPtr`]s,
/// because the traits needed for non-`core` types to correctly operate in
/// ranges are still unstable. The structure can be converted into a range,
/// but that range will not be an iterator.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
/// use bitvec::ptr as bv_ptr;
///
/// let mut data = 0u8;
/// let bits = data.view_bits_mut::<Msb0>();
/// for mut bitptr in bits.as_mut_bitptr_range() {
/// unsafe { bv_ptr::write(bitptr, true); }
/// }
/// assert_eq!(data, !0);
/// ```
///
/// [`BitPtr`]: crate::ptr::BitPtr
/// [`as_mut_bitptr`]: Self::as_mut_bitptr
pub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, O, T> {
unsafe { self.as_mut_bitptr().range(self.len()) }
}
/// Splits the slice into subslices at alias boundaries.
///
/// This splits `self` into the memory locations that it partially fills and
/// the memory locations that it completely fills. The locations that are
/// completely filled may be accessed without any `bitvec`-imposed alias
/// conditions, while the locations that are only partially filled are left
/// unchanged.
///
/// You can read more about the [`BitDomain`] splitting in its
/// documentation.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u16; 3];
/// let all = data.view_bits_mut::<Msb0>();
/// let (_, rest) = all.split_at_mut(8);
/// let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
///
/// let (head, body, tail) = bits
/// .bit_domain()
/// .region()
/// .unwrap();
/// assert_eq!(head.len(), 8);
/// assert_eq!(tail.len(), 8);
/// let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
/// let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
/// let _: &BitSlice<Msb0, u16> = body;
/// ```
///
/// [`BitDomain`]: crate::domain::BitDomain
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn bit_domain(&self) -> BitDomain<O, T> {
BitDomain::new(self)
}
/// Splits the slice into subslices at alias boundaries.
///
/// This splits `self` into the memory locations that it partially fills and
/// the memory locations that it completely fills. The locations that are
/// completely filled may be accessed without any `bitvec`-imposed alias
/// conditions, while the locations that are only partially filled are left
/// unchanged.
///
/// You can read more about the [`BitDomainMut`] splitting in its
/// documentation.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u16; 3];
/// let all = data.view_bits_mut::<Msb0>();
/// let (_, rest) = all.split_at_mut(8);
/// let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias>
/// = &mut rest[.. 32];
///
/// let (head, body, tail) = bits
/// .bit_domain_mut()
/// .region()
/// .unwrap();
/// assert_eq!(head.len(), 8);
/// assert_eq!(tail.len(), 8);
/// let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
/// let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
/// let _: &mut BitSlice<Msb0, u16> = body;
/// ```
///
/// [`BitDomainMut`]: crate::domain::BitDomainMut
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn bit_domain_mut(&mut self) -> BitDomainMut<O, T> {
BitDomainMut::new(self)
}
/// Views the underlying memory containing the slice, split at alias
/// boundaries.
///
/// This splits `self` into the memory locations that it partially fills and
/// the memory locatinos that it completely fills. The locations that are
/// completely filled may be accessed without any `bitvec`-imposed alias
/// conditions, while the locations that are only partially filled are left
/// unchanged.
///
/// You can read more about the [`Domain`] splitting in its documentation.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u16; 3];
/// let all = data.view_bits_mut::<Msb0>();
/// let (_, rest) = all.split_at_mut(8);
/// let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
///
/// let (head, body, tail) = bits
/// .domain()
/// .region()
/// .unwrap();
/// assert_eq!(body.len(), 1);
///
/// let _: &<u16 as BitStore>::Alias = head.unwrap().1;
/// let _: &<u16 as BitStore>::Alias = tail.unwrap().0;
/// let _: &[u16] = body;
/// ```
///
/// [`Domain`]: crate::domain::Domain
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn domain(&self) -> Domain<T> {
Domain::new(self)
}
/// Views the underlying memory containing the slice, split at alias
/// boundaries.
///
/// This splits `self` into the memory locations that it partially fills and
/// the memory locations that it completely fills. The locations that are
/// completely filled may be accessed without any `bitvec`-imposed alias
/// conditions, while the locations that are only partially filled are left
/// unchanged.
///
/// You can read more about the [`DomainMut`] splitting in its
/// documentation.
///
/// # Examples
///
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u16; 3];
/// let all = data.view_bits_mut::<Msb0>();
/// let (_, rest) = all.split_at_mut(8);
/// let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = &mut rest[.. 32];
///
/// let (head, body, tail) = bits
/// .domain_mut()
/// .region()
/// .unwrap();
/// assert_eq!(body.len(), 1);
///
/// let _: &<<u16 as BitStore>::Alias as BitStore>::Access = head.unwrap().1;
/// let _: &<<u16 as BitStore>::Alias as BitStore>::Access = tail.unwrap().0;
/// let _: &mut [u16] = body;
/// ```
///
/// [`DomainMut`]: crate::domain::DomainMut
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn domain_mut(&mut self) -> DomainMut<T> {
DomainMut::new(self)
}
/// Views the underlying memory containing the slice.
///
/// The returned slice handle views all elements touched by `self`, and
/// marks them all with `self`’s current aliasing state. For a more precise
/// view, or one that permits mutation, use [`.domain()`] or
/// [`.domain_mut()`].
///
/// [`.domain()`]: Self::domain
/// [`.domain_mut()`]: Self::domain_mut
pub fn as_slice(&self) -> &[T] {
let bitspan = self.as_bitspan();
let (base, elts) = (bitspan.address().to_const(), bitspan.elements());
unsafe { slice::from_raw_parts(base, elts) }
}
}
/// Crate-internal functions.
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Type-cast the slice reference to its pointer structure.
pub(crate) fn as_bitspan(&self) -> BitSpan<Const, O, T> {
BitSpan::from_bitslice_ptr(self)
}
/// Type-cast the slice reference to its pointer structure.
pub(crate) fn as_mut_bitspan(&mut self) -> BitSpan<Mut, O, T> {
BitSpan::from_bitslice_ptr_mut(self)
}
/// Asserts that `index` is less than [`self.len()`].
///
/// # Parameters
///
/// - `&self`
/// - `index`: The index to test against [`self.len()`].
///
/// # Panics
///
/// This method panics if `index` is not less than `self.len()`.
///
/// [`self.len()`]: Self::len
pub(crate) fn assert_in_bounds(&self, index: usize) {
let len = self.len();
assert!(index < len, "Index out of range: {} >= {}", index, len);
}
/// Marks an immutable slice as referring to aliased memory region.
pub(crate) fn alias(&self) -> &BitSlice<O, T::Alias> {
unsafe { &*(self as *const Self as *const BitSlice<O, T::Alias>) }
}
/// Marks a mutable slice as describing an aliased memory region.
pub(crate) fn alias_mut(&mut self) -> &mut BitSlice<O, T::Alias> {
unsafe { &mut *(self as *mut Self as *mut BitSlice<O, T::Alias>) }
}
/// Removes the aliasing marker from a mutable slice handle.
///
/// # Safety
///
/// This must only be used when the slice is either known to be unaliased,
/// or this call is combined with an operation that adds an aliasing marker
/// and the total number of aliasing markers must remain unchanged.
#[cfg(not(tarpaulin_include))]
pub(crate) unsafe fn unalias_mut(
this: &mut BitSlice<O, T::Alias>,
) -> &mut Self {
&mut *(this as *mut BitSlice<O, T::Alias> as *mut Self)
}
/// Splits a mutable slice at some mid-point, without checking boundary
/// conditions or adding an alias marker.
///
/// This method has the same behavior as [`.split_at_unchecked_mut()`],
/// except that it does not apply an aliasing marker to the partitioned
/// subslices.
///
/// # Safety
///
/// See [`.split_at_unchecked_mut()`] for safety requirements.
///
/// Additionally, this is only safe when `T` is alias-safe.
///
/// [`.split_at_unchecked_mut()`]: Self::split_at_unchecked_mut
pub(crate) unsafe fn split_at_unchecked_mut_noalias(
&mut self,
mid: usize,
) -> (&mut Self, &mut Self) {
// Split the slice at the requested midpoint, adding an alias layer
let (head, tail) = self.split_at_unchecked_mut(mid);
// Remove the new alias layer.
(Self::unalias_mut(head), Self::unalias_mut(tail))
}
}
/// Methods available only when `T` allows shared mutability.
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitSafe + BitStore,
{
/// Splits a mutable slice at some mid-point.
///
/// This method has the same behavior as [`.split_at_mut()`], except that it
/// does not apply an aliasing marker to the partitioned subslices.
///
/// # Safety
///
/// Because this method is defined only on `BitSlice`s whose `T` type is
/// alias-safe, the subslices do not need to be additionally marked.
///
/// [`.split_at_mut()`]: Self::split_at_mut
pub fn split_at_aliased_mut(
&mut self,
mid: usize,
) -> (&mut Self, &mut Self) {
let (head, tail) = self.split_at_mut(mid);
unsafe { (Self::unalias_mut(head), Self::unalias_mut(tail)) }
}
}
/// Miscellaneous information.
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// The inclusive maximum length of a `BitSlice<_, T>`.
///
/// As `BitSlice` is zero-indexed, the largest possible index is one less
/// than this value.
///
/// |CPU word width| Value |
/// |-------------:|----------------------:|
/// |32 bits | `0x1fff_ffff` |
/// |64 bits |`0x1fff_ffff_ffff_ffff`|
pub const MAX_BITS: usize = BitSpan::<Const, O, T>::REGION_MAX_BITS;
/// The inclusive maximum length that a slice `[T]` can be for
/// `BitSlice<_, T>` to cover it.
///
/// A `BitSlice<_, T>` that begins in the interior of an element and
/// contains the maximum number of bits will extend one element past the
/// cutoff that would occur if the slice began at the zeroth bit. Such a
/// slice must be manually constructed, but will not otherwise fail.
///
/// |Type Bits|Max Elements (32-bit)| Max Elements (64-bit) |
/// |--------:|--------------------:|----------------------:|
/// | 8| `0x0400_0001` |`0x0400_0000_0000_0001`|
/// | 16| `0x0200_0001` |`0x0200_0000_0000_0001`|
/// | 32| `0x0100_0001` |`0x0100_0000_0000_0001`|
/// | 64| `0x0080_0001` |`0x0080_0000_0000_0001`|
pub const MAX_ELTS: usize = BitSpan::<Const, O, T>::REGION_MAX_ELTS;
}
#[cfg(feature = "alloc")]
impl<O, T> BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Copies `self` into a new [`BitVec`].
///
/// This resets any alias markings from `self`, since the returned buffer is
/// known to be newly allocated and thus unaliased.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 1];
/// let bv = bits.to_bitvec();
/// assert_eq!(bits, bv);
/// ```
///
/// [`BitVec`]: crate::vec::BitVec
pub fn to_bitvec(&self) -> BitVec<O, T::Unalias> {
let mut bitspan = self.as_bitspan();
// Create an allocation and copy `*self` into it.
let mut vec = self.domain().collect::<Vec<_>>().pipe(ManuallyDrop::new);
let capacity = vec.capacity();
unsafe {
bitspan
.set_address(Address::new_unchecked(vec.as_mut_ptr() as usize));
BitVec::from_fields(
bitspan.assert_mut().cast::<T::Unalias>(),
capacity,
)
}
}
}
/** Performs the same functionality as [`from_raw_parts`], without checking the
`len` argument.
# Parameters
- `data`: A `BitPtr` to a dereferencable region of memory.
- `len`: The length, in bits, of the region beginning at `*data`. This is not
checked against the maximum value, and is encoded directly into the bit-slice
reference. If it exceeds [`BitSlice::MAX_BITS`], it will be modulated to fit
(the high bits will be discarded).
# Returns
A `&BitSlice` reference starting at `data` and running for `len & MAX_BITS`
bits.
# Safety
See [`from_raw_parts`].
[`BitSlice::MAX_BITS`]: crate::slice::BitSlice::MAX_BITS
[`from_raw_parts`]: crate::slice::from_raw_parts
**/
pub unsafe fn from_raw_parts_unchecked<'a, O, T>(
data: BitPtr<Const, O, T>,
len: usize,
) -> &'a BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
data.span_unchecked(len).to_bitslice_ref()
}
/** Performs the same functionality as [`from_raw_parts_mut`], without checking
the `len` argument.
# Parameters
- `data`: A `BitPtr` to a dereferencable region of memory.
- `len`: The length, in bits, of the region beginning at `*data`. This is not
checked against the maximum value, and is encoded directly into the bit-slice
reference. If it exceeds [`BitSlice::MAX_BITS`], it will be modulated to fit
(the high bits will be discarded).
# Returns
A `&mut BitSlice` reference starting at `data` and running for `len & MAX_BITS`
bits.
# Safety
See [`from_raw_parts_mut`].
[`BitSlice::MAX_BITS`]: crate::slice::BitSlice::MAX_BITS
[`from_raw_parts_mut`]: crate::slice::from_raw_parts_mut
**/
pub unsafe fn from_raw_parts_unchecked_mut<'a, O, T>(
data: BitPtr<Mut, O, T>,
len: usize,
) -> &'a mut BitSlice<O, T>
where
O: BitOrder,
T: BitStore,
{
data.span_unchecked(len).to_bitslice_mut()
}
mod api;
mod iter;
mod ops;
mod specialization;
mod traits;
// Match the `core::slice` module topology.
pub use self::{
api::{
from_mut,
from_raw_parts,
from_raw_parts_mut,
from_ref,
BitSliceIndex,
},
iter::{
Chunks,
ChunksExact,
ChunksExactMut,
ChunksMut,
Iter,
IterMut,
IterOnes,
IterZeros,
RChunks,
RChunksExact,
RChunksExactMut,
RChunksMut,
RSplit,
RSplitMut,
RSplitN,
RSplitNMut,
Split,
SplitMut,
SplitN,
SplitNMut,
Windows,
},
};
#[cfg(test)]
mod tests;