1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/*! Batched load/store access to bitfields.
This module provides load/store access to bitfield regions that emulates the
ordinary memory bus. This functionality enables any [`BitSlice`] span to be used
as a memory region, and provides the basis of a library-level analogue to the
bitfield language feature found in C and C++. Additionally, orderings that have
contiguous positions can transfer more than one bit in an operation, allowing a
performance acceleration over sequential bit-by-bit traversal.
The [`BitField`] trait is open for implementation. Rust’s implementation rules
currently disallow a crate to implement a foreign trait on a foreign type, even
when parameterized over a local type. If you need such a `BitField`
implementation with a new `BitOrder` type, please file an issue.
# Batched Behavior
The first purpose of [`BitField`] is to provide access to [`BitSlice`] regions
as if they were an ordinary memory location. However, this can be done through
the `BitSlice` sequential API. The second purpose of this trait is to accelerate
such access by using the parallel memory bus to transfer more than one bit at a
time when the region permits it. As such, implementors should provide a transfer
behavior based on shift/mask operations wherever possible, for as wide a span in
a memory element as possible.
# Register Bit Order Preservation
As a default assumption, each element of the underlying memory region used to
store part of a value should not reörder the bit-pattern of that value. While
the [`BitOrder`] argument is used to determine which segments of the memory
register are live for the purposes of this transfer, it should not be used to
map each individual bit of the transferred value to a corresponding bit of the
storage element. As an example, the [`Lsb0`] and [`Msb0`] implementations both
store the value `12u8` in memory as a four-bit span with its two
more-significant bits set and its two less-significant bits cleared; the
difference is only in *which* bits of an element are used to store the span.
# Endianness
The `_le` and `_be` methods of [`BitField`] refer to the order in which
successive `T` elements of a storage region are assigned numeric significance
during a transfer. Within any particular `T` element, the ordering of its memory
is not governed by the `BitField` trait.
The provided [`BitOrder`] implementors [`Lsb0`] and [`Msb0`] use the local
machine’s byte ordering, and do not reörder bytes during transfer.
## `_le` Methods
When storing a value `M` into a sequence of memory elements `T`, [`store_le`]
breaks `M` into chunks from the least significant edge. The least significant
chunk is placed in the lowest-addressed element `T`, then the next more
significant chunk is placed in the successive address, until the most
significant chunk of the value `M` is placed in the highest address of a
location `T`.
When loading a value `M` out of a sequence of memory elements `T`, [`load_le`]
uses the same chunking behavior: the lowest-addressed `T` contains the least
significant chunk of the returned `M`, then each successive address contains a
more significant chunk, until the highest address contains the most significant.
The [`BitOrder`] implementation governs *where* in each `T` location a fragment
of `M` is stored.
Let us store 8 bits into memory, over an element boundary, using both [`Lsb0`]
and [`Msb0`] orderings:
```rust
use bitvec::prelude::*;
let val: u8 = 0b11010_011;
// STUVW XYZ
let mut store = [0u8; 2];
store.view_bits_mut::<Lsb0>()
[5 .. 13]
.store_le(val);
assert_eq!(
store,
[0b011_00000, 0b000_11010],
// XYZ STUVW
# "[{:08b}, {:08b}]",
# store[0],
# store[1],
);
store = [0u8; 2];
store.view_bits_mut::<Msb0>()
[5 .. 13]
.store_le(val);
assert_eq!(
store,
[0b00000_011, 0b11010_000],
// XYZ STUVW
# "[{:08b}, {:08b}]",
# store[0],
# store[1],
);
```
In both cases, the lower three bits of `val` were placed into the element at the
lower memory address. The choice of [`Lsb0`] vs [`Msb0`] changed *which* three
bits in the element were considered to be indexed by `5 .. 8`, but [`store_le`]
always placed the least three bits of `val`, *in ordinary register order*, into
element `[0]`. Similarly, the higher five bits of `val` were placed into element
`[1]`; `Lsb0` and `Msb0` selected *which* five bits in the element were indexed
by `8 .. 13`, and the bits retained their register order.
## `_be` Methods
When storing a value `M` into a sequence of memory elements `T`, [`store_be`]
breaks `M` into chunks from the most significant edge. The most significant
chunk is placed in the lowest-addressed element `T`, then the next less
significant chunk is placed in the successive address, until the least
significant chunk of the value `M` is placed in the highest address of a
location `T`.
When loading a value `M` out of a sequence of memory elements `T`, [`load_be`]
uses the same chunking behavior: the lowest-addressed `T` contains the most
significant chunk of the returned `M`, then each successive address contains a
less significant chunk, until the highest address contains the least
significant.
The [`BitOrder`] implementation governs *where* in each `T` location a fragment
of `M` is stored.
Let us store 8 bits into memory, over an element boundary, using both [`Lsb0`]
and [`Msb0`] orderings:
```rust
use bitvec::prelude::*;
let val: u8 = 0b110_10011;
// STU VWXYZ
let mut store = [0u8; 2];
store.view_bits_mut::<Lsb0>()
[5 .. 13]
.store_be(val);
assert_eq!(
store,
[0b110_00000, 0b000_10011],
// STU VWXYZ
# "[{:08b}, {:08b}]",
# store[0],
# store[1],
);
store = [0u8; 2];
store.view_bits_mut::<Msb0>()
[5 .. 13]
.store_be(val);
assert_eq!(
store,
[0b00000_110, 0b10011_000],
// STU VWXYZ
# "[{:08b}, {:08b}]",
# store[0],
# store[1],
);
```
In both cases, the higher three bits of `val` were placed into the element at
the lower memory address. The choice of [`Lsb0`] vs [`Msb0`] changed *which*
three bits in the element were considered to be indexed by `5 .. 8`, but
[`store_be`] always placed the greatest three bits of `val`, *in ordinary*
*register order*, into element `[0]`. Similarly, the lower five bits of `val`
were placed into element `[1]`; `Lsb0` and `Msb0` selected *which* five bits in
the element were indexed by `8 .. 13`, and the bits retained their register
order.
# `M` and `T` Relationships
`BitField` permits any type of (unsigned) integer `M` to be stored into or
loaded from a bit-slice region with any storage type `T`. While the examples
used `u8` for both, for brevity of writing out values, `BitField` will still
operate correctly for any other combination of types.
`Bitfield` implementations use the processor’s own concept of integer registers
to operate. As such, the byte-wise memory access patterns for types wider than
`u8` depends on your processor’s byte-endianness, as well as which `BitField`
method and which `BitOrder` implementation you are using.
`BitField` only operates within processor registers; traffic of `T` elements
between the memory bank and the processor register is controlled entirely by the
processor.
If you do not want to introduce the processor’s byte-endianness as a variable
that affects the in-memory representation of stored integers, stick to
`BitSlice<_, u8>` as the bit-field driver. `BitSlice<Msb0, u8>` will fill memory
in a way that matches a debugger or other memory inspections.
[`BitField`]: crate::field::BitField
[`BitOrder`]: crate::order::BitOrder
[`BitSlice`]: crate::slice::BitSlice
[`Lsb0`]: crate::order::Lsb0
[`Msb0`]: crate::order::Msb0
[`load_be`]: crate::field::BitField::load_be
[`load_le`]: crate::field::BitField::load_le
[`store_be`]: crate::field::BitField::store_be
[`store_le`]: crate::field::BitField::store_le
!*/
use crate::{
access::BitAccess,
array::BitArray,
domain::{
Domain,
DomainMut,
},
index::BitMask,
mem::BitMemory,
order::{
BitOrder,
Lsb0,
Msb0,
},
slice::BitSlice,
store::BitStore,
view::BitView,
};
use core::{
mem,
ptr,
};
use tap::pipe::Pipe;
#[cfg(feature = "alloc")]
use crate::{
boxed::BitBox,
vec::BitVec,
};
/** Performs C-style bitfield access through a [`BitSlice`].
This trait transfers data between a [`BitSlice`] region and a local integer. The
trait functions always place the live bits of the value against the least
significant bit edge of the local integer (the return value of the load methods,
and the argument value of the store methods).
Methods should be called as `bits[start .. end].load_or_store()`, where the
range subslice selects no more than the [`M::BITS`] element width.
# Target-Specific Behavior
When you are using this trait to manage memory that never leaves your machine,
you can use the [`load`] and [`store`] methods. However, if you are using this
trait to operate on a de/serialization buffer, where the exact bit pattern in
memory is important to your work and/or you need to be aware of the processor
byte endianness, you must not use these methods.
Instead, use [`load_le`], [`load_be`], [`store_le`], or[`store_be`] directly.
The un-suffixed methods choose their implementation based on the target
processor byte endianness; the suffixed methods have a consistent and fixed
behavior.
# Element- and Bit- Ordering Combinations
The `_le` and `_be` method suffices refer to the significance of successive
elements `T` in memory, while the `BitOrder` trait refers to the order that bits
within a single element `T` are traversed. The `BitField` methods and the
`BitOrder` implementors are ***not*** related.
When a load or store operation is contained in only one memory element, then the
`_le` and `_be` methods have the same behavior. They differ when the operation
must touch more than one element.
The module documentation contains a more detailed explanation, and examples, for
this behavior.
[`BitSlice`]: crate::slice::BitSlice
[`M::BITS`]: crate::mem::BitMemory::BITS
[`load`]: Self::load
[`load_be`]: Self::load_be
[`load_le`]: Self::load_le
[`store`]: Self::store
[`store_be`]: Self::store_be
[`store_le`]: Self::store_le
**/
pub trait BitField {
/// Loads the bits in the `self` region into a local value.
///
/// This can load into any of the unsigned integers which implement
/// [`BitMemory`]. Any further transformation must be done by the user.
///
/// # Target-Specific Behavior
///
/// **THIS FUNCTION CHANGES BEHAVIOR FOR DIFFERENT TARGETS.**
///
/// The default implementation of this function calls [`load_le`] on
/// little-endian byte-ordered CPUs, and [`load_be`] on big-endian
/// byte-ordered CPUs.
///
/// If you are using this function from a region that crosses multiple
/// elements in memory, be aware that it will behave differently on
/// big-endian and little-endian target architectures.
///
/// # Parameters
///
/// - `&self`: A read reference to some bits in memory. This slice must be
/// trimmed to have a width no more than the [`M::BITS`] width of the type
/// being loaded. This can be accomplished with range indexing on a larger
/// slice.
///
/// # Returns
///
/// A value `M` whose least [`self.len()`] significant bits are filled with
/// the bits of `self`.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// [`BitMemory`]: crate::mem::BitMemory
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`load_be`]: Self::load_be
/// [`load_le`]: Self::load_le
/// [`self.len()`]: crate::slice::BitSlice::len
fn load<M>(&self) -> M
where M: BitMemory {
#[cfg(target_endian = "little")]
return self.load_le::<M>();
#[cfg(target_endian = "big")]
return self.load_be::<M>();
}
/// Stores a sequence of bits from the user into the domain of `self`.
///
/// This can store any of the unsigned integers which implement
/// [`BitMemory`]. Any other types must first be transformed by the user.
///
/// # Target-Specific Behavior
///
/// **THIS FUNCTION CHANGES BEHAVIOR FOR DIFFERENT TARGETS.**
///
/// The default implementation of this function calls [`store_le`] on
/// little-endian byte-ordered CPUs, and [`store_be`] on big-endian
/// byte-ordered CPUs.
///
/// If you are using this function to store into a region that crosses
/// multiple elements in memory, be aware that it will behave differently on
/// big-endian and little-endian target architectures.
///
/// # Parameters
///
/// - `&mut self`: A write reference to some bits in memory. This slice must
/// be trimmed to have a width no more than the [`M::BITS`] width of the
/// type being stored. This can be accomplished with range indexing on a
/// larger slice.
/// - `value`: A value, whose [`self.len()`] least significant bits will be
/// stored into `self`.
///
/// # Behavior
///
/// The [`self.len()`] least significant bits of `value` are written into
/// the domain of `self`.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// [`BitMemory`]: crate::mem::BitMemory
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`self.len()`]: crate::slice::BitSlice::len
/// [`store_be`]: Self::store_be
/// [`store_le`]: Self::store_le
fn store<M>(&mut self, value: M)
where M: BitMemory {
#[cfg(target_endian = "little")]
self.store_le(value);
#[cfg(target_endian = "big")]
self.store_be(value);
}
/// Loads from `self`, using little-endian element `T` ordering.
///
/// This function interprets a multi-element slice as having its least
/// significant chunk in the low memory address, and its most significant
/// chunk in the high memory address. Each element `T` is still interpreted
/// from individual bytes according to the local CPU ordering.
///
/// # Parameters
///
/// - `&self`: A read reference to some bits in memory. This slice must be
/// trimmed to have a width no more than the [`M::BITS`] width of the type
/// being loaded. This can be accomplished with range indexing on a larger
/// slice.
///
/// # Returns
///
/// A value `M` whose least [`self.len()`] significant bits are filled with
/// the bits of `self`. If `self` spans multiple elements `T`, then the
/// lowest-address `T` is interpreted as containing the least significant
/// bits of the return value `M`, and the highest-address `T` is interpreted
/// as containing its most significant bits.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// # Examples
///
/// This example shows how a value is segmented across multiple storage
/// elements:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Msb0>()
/// [5 .. 17]
/// .store_le(0b0000_1_1011_1000_110u16);
/// // O PQRS TUVW XYZ
///
/// assert_eq!(data, [
/// 0b00000_110, 0b1011_1000, 0b1_0000000
/// // XYZ PQRS TUVW O
/// ]);
///
/// let val = data.view_bits::<Msb0>()
/// [5 .. 17]
/// .load_le::<u16>();
/// assert_eq!(
/// val,
/// 0b0000_1_1011_1000_110,
/// // O PQRS TUVW XYZ
/// );
/// ```
///
/// And this example shows how the same memory region will be read by
/// different `BitOrder` implementors:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// // Bit pos: 14 19 16
/// // Lsb0: ─┤ ├──┤
/// let arr = [0b0100_0000_0000_0011u16, 0b0001_0000_0000_1110u16];
/// // Msb0: ├─ ├──┤
/// // Bit pos: 14 16 19
///
/// assert_eq!(
/// arr.view_bits::<Lsb0>()[14 .. 20].load_le::<u8>(),
/// 0b111001,
/// );
/// assert_eq!(
/// arr.view_bits::<Msb0>()[14 .. 20].load_le::<u8>(),
/// 0b000111,
/// );
/// ```
///
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`self.len()`]: crate::slice::BitSlice::len
fn load_le<M>(&self) -> M
where M: BitMemory;
/// Loads from `self`, using big-endian element `T` ordering.
///
/// This function interprets a multi-element slice as having its most
/// significant chunk in the low memory address, and its least significant
/// chunk in the high memory address. Each element `T` is still interpreted
/// from individual bytes according to the local CPU ordering.
///
/// # Parameters
///
/// - `&self`: A read reference to some bits in memory. This slice must be
/// trimmed to have a width no more than the [`M::BITS`] width of the type
/// being loaded. This can be accomplished with range indexing on a larger
/// slice.
///
/// # Returns
///
/// A value `M` whose least [`self.len()`] significant bits are filled with
/// the bits of `self`. If `self` spans multiple elements `T`, then the
/// lowest-address `T` is interpreted as containing the most significant
/// bits of the return value `M`, and the highest-address `T` is interpreted
/// as containing its least significant bits.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// # Examples
///
/// This example shows how a value is segmented across multiple storage
/// elements:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Msb0>()
/// [5 .. 17]
/// .store_be(0b0000_110_1000_1011_1u16);
/// // OPQ RSTU VWXY Z
///
/// assert_eq!(data, [
/// 0b00000_110, 0b1000_1011, 0b1_0000000
/// // OPQ RSTU VWXY Z
/// ]);
///
/// let val = data.view_bits::<Msb0>()
/// [5 .. 17]
/// .load_be::<u16>();
/// assert_eq!(
/// val,
/// 0b0000_110_1000_1011_1,
/// // OPQ RSTU VWXY Z
/// # "{:012b}",
/// # val,
/// );
/// ```
///
/// And this example shows how the same memory region will be read by
/// different `BitOrder` implementations:
///
/// ```rust
/// use bitvec::prelude::*;
/// // Bit pos: 14 19 16
/// // Lsb0: ─┤ ├──┤
/// let arr = [0b0100_0000_0000_0011u16, 0b0001_0000_0000_1110u16];
/// // Msb0: ├─ ├──┤
/// // Bit pos: 14 15 19
///
/// assert_eq!(
/// arr.view_bits::<Lsb0>()[14 .. 20].load_be::<u8>(),
/// 0b011110,
/// );
/// assert_eq!(
/// arr.view_bits::<Msb0>()[14 .. 20].load_be::<u8>(),
/// 0b110001,
/// );
/// ```
///
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`self.len()`]: crate::slice::BitSlice::len
fn load_be<M>(&self) -> M
where M: BitMemory;
/// Stores into `self`, using little-endian element ordering.
///
/// This function interprets a multi-element slice as having its least
/// significant chunk in the low memory address, and its most significant
/// chunk in the high memory address. Each element `T` is still interpreted
/// from individual bytes according to the local CPU ordering.
///
/// # Parameters
///
/// - `&mut self`: A write reference to some bits in memory. This slice must
/// be trimmed to have a width no more than the [`M::BITS`] width of the
/// type being stored. This can be accomplished with range indexing on a
/// larger slice.
/// - `value`: A value, whose [`self.len()`] least significant bits will be
/// stored into `self`.
///
/// # Behavior
///
/// The [`self.len()`] least significant bits of `value` are written into
/// the domain of `self`. If `self` spans multiple elements `T`, then the
/// lowest-address `T` is interpreted as containing the least significant
/// bits of the `M` return value, and the highest-address `T` is interpreted
/// as containing its most significant bits.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// # Examples
///
/// This example shows how a value is segmented across multiple storage
/// elements:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Lsb0>()
/// [5 .. 17]
/// .store_le(0b0000_1_1011_1000_110u16);
/// // O PQRS TUVW XYZ
///
/// assert_eq!(data, [
/// 0b110_00000, 0b1011_1000, 0b0000000_1
/// // XYZ PQRS TUVW O
/// ]);
///
/// let val = data.view_bits::<Lsb0>()
/// [5 .. 17]
/// .load_le::<u16>();
/// assert_eq!(
/// val,
/// 0b0000_1_1011_1000_110u16,
/// // O PQRS TUVW XYZ
/// );
/// ```
///
/// And this example shows how the same memory region is written by
/// different `BitOrder` implementations:
///
/// ```rust
/// use bitvec::prelude::*;
/// let mut lsb0 = bitarr![Lsb0, u16; 0; 32];
/// let mut msb0 = bitarr![Msb0, u16; 0; 32];
///
/// // Bit pos: 14 19 16
/// // Lsb0: ─┤ ├──┤
/// let exp_lsb0 = [0b0100_0000_0000_0000u16, 0b0000_0000_0000_1110u16];
/// let exp_msb0 = [0b0000_0000_0000_0011u16, 0b0001_0000_0000_0000u16];
/// // Msb0: ├─ ├──┤
/// // Bit pos: 14 15 19
///
/// lsb0[14 ..= 19].store_le(0b111001u8);
/// msb0[14 ..= 19].store_le(0b000111u8);
/// assert_eq!(lsb0.as_raw_slice(), exp_lsb0);
/// assert_eq!(msb0.as_raw_slice(), exp_msb0);
/// ```
///
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`self.len()`]: crate::slice::BitSlice::len
fn store_le<M>(&mut self, value: M)
where M: BitMemory;
/// Stores into `self`, using big-endian element ordering.
///
/// This function interprets a multi-element slice as having its most
/// significant chunk in the low memory address, and its least significant
/// chunk in the high memory address. Each element `T` is still interpreted
/// from individual bytes according to the local CPU ordering.
///
/// # Parameters
///
/// - `&mut self`: A write reference to some bits in memory. This slice must
/// be trimmed to have a width no more than the [`M::BITS`] width of the
/// type being stored. This can be accomplished with range indexing on a
/// larger slice.
/// - `value`: A value, whose [`self.len()`] least significant bits will be
/// stored into `self`.
///
/// # Behavior
///
/// The [`self.len()`] least significant bits of `value` are written into
/// the domain of `self`. If `self` spans multiple elements `T`, then the
/// lowest-address `T` is interpreted as containing the most significant
/// bits of the `M` return value, and the highest-address `T` is interpreted
/// as containing its least significant bits.
///
/// # Panics
///
/// This method is encouraged to panic if `self` is empty, or wider than a
/// single element `M`.
///
/// # Examples
///
/// This example shows how a value is segmented across multiple storage
/// elements:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Lsb0>()
/// [5 .. 17]
/// .store_be(0b0000_110_1000_1011_1u16);
/// // OPQ RSTU VWXY Z
///
/// assert_eq!(data, [
/// 0b110_00000, 0b1000_1011, 0b0000000_1
/// // OPQ RSTU VWXY Z
/// ]);
///
/// let val = data.view_bits::<Lsb0>()
/// [5 .. 17]
/// .load_be::<u16>();
/// assert_eq!(
/// val,
/// 0b0000_110_1000_1011_1u16,
/// // OPQ RSTU VWXY Z
/// );
/// ```
///
/// And this example shows how the same memory region is written by
/// different `BitOrder` implementations:
///
/// ```rust
/// use bitvec::prelude::*;
/// let mut lsb0 = bitarr![Lsb0, u16; 0; 32];
/// let mut msb0 = bitarr![Msb0, u16; 0; 32];
///
/// // Bit pos: 14 19 16
/// // Lsb0: ─┤ ├──┤
/// let exp_lsb0 = [0b0100_0000_0000_0000u16, 0b0000_0000_0000_1110u16];
/// let exp_msb0 = [0b0000_0000_0000_0011u16, 0b0001_0000_0000_0000u16];
/// // Msb0: ├─ ├──┤
/// // Bit pos: 14 15 19
///
/// lsb0[14 ..= 19].store_be(0b011110u8);
/// msb0[14 ..= 19].store_be(0b110001u8);
/// assert_eq!(lsb0.as_raw_slice(), exp_lsb0);
/// assert_eq!(msb0.as_raw_slice(), exp_msb0);
/// ```
///
/// [`M::BITS`]: crate::mem::BitMemory::BITS
/// [`self.len()`]: crate::slice::BitSlice::len
fn store_be<M>(&mut self, value: M)
where M: BitMemory;
}
impl<T> BitField for BitSlice<Lsb0, T>
where T: BitStore
{
/// Loads from `self`, using little-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element contains the least significant segment of the
/// returned value, in the bits at the most significant edge of the
/// element,
/// - its [`body`] slice contains successively more-significant segments,
/// and
/// - its [`tail`] element contains the most significant segment of the
/// returned value, in the bits at the least significant edge of the
/// element.
///
/// If the domain is an [`Enclave`], then the referent element is merely
/// loaded, shifted, and masked; no recombination of segments is necessary.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Lsb0>()[5 .. 21].store_le::<u16>(
/// 0b1_1011_0100_1100_011
/// // K LMNO PQRS TUVW XYZ
/// );
/// assert_eq!(data, [
/// 0b011_00000, 0b0100_1100, 0b000_1_1011
/// // XYZ PQRS TUVW K LMNO
/// ]);
/// let val = data.view_bits::<Lsb0>()[5 .. 21].load_le::<u16>();
/// assert_eq!(
/// val,
/// 0b1_1011_0100_1100_011,
/// // K LMNO PQRS TUVW XYZ
/// );
/// ```
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`body`]: crate::domain::Domain::Region::body
/// [`head`]: crate::domain::Domain::Region::head
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn load_le<M>(&self) -> M
where M: BitMemory {
check::<M>("load", self.len());
match self.domain() {
// In Lsb0, a `head` index counts distance from LSedge, and a
// `tail` index counts element width minus distance from MSedge.
Domain::Enclave { head, elem, tail } => {
get::<T, M>(elem, Lsb0::mask(head, tail), head.value())
},
Domain::Region { head, body, tail } => {
let mut accum = M::ZERO;
/* For multi-`T::Mem` domains, the most significant chunk is
stored in the highest memory address, the tail. Each successive
memory address lower has a chunk of decreasing significance,
until the least significant chunk is stored in the lowest memory
address, the head.
*/
if let Some((elem, tail)) = tail {
accum = get::<T, M>(elem, Lsb0::mask(None, tail), 0);
}
for elem in body.iter().rev().map(BitStore::load_value) {
/* Rust does not allow the use of shift instructions of
exactly a type width to clear a value. This loop only enters
when `M` is not narrower than `T::Mem`, and the shift is
only needed when `M` occupies *more than one* `T::Mem` slot.
When `M` is exactly as wide as `T::Mem`, this loop either
does not run (head and tail only), or runs once (single
element), and thus the shift is unnecessary.
As a const-expression, this branch folds at compile-time to
conditionally remove or retain the instruction.
*/
if M::BITS > T::Mem::BITS {
accum <<= T::Mem::BITS;
}
accum |= resize::<T::Mem, M>(elem);
}
if let Some((head, elem)) = head {
let shamt = head.value();
if M::BITS > T::Mem::BITS - shamt {
accum <<= T::Mem::BITS - shamt;
}
else {
accum = M::ZERO;
}
accum |= get::<T, M>(elem, Lsb0::mask(head, None), shamt);
}
accum
},
}
}
/// Loads from `self`, using big-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element contains the most significant segment of the
/// returned value, in the bits at the most significant edge of the
/// element,
/// - its [`body`] slice contains successively less-significant segments,
/// and
/// - its [`tail`] element contains the least significant segment of the
/// returned value, in the bits at the least significant edge of the
/// element.
///
/// If the domain is an [`Enclave`], then the referent element is merely
/// loaded, shifted, and masked; no recombination of segments is necessary.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Lsb0>()[5 .. 21].store_be::<u16>(
/// 0b011_1100_0100_1011_1,
/// // KLM NOPQ RSTU VWXY Z
/// );
/// assert_eq!(data, [
/// 0b011_00000, 0b1100_0100, 0b000_1011_1
/// // KLM NOPQ RSTU VWXY Z
/// ]);
/// let val = data.view_bits::<Lsb0>()[5 .. 21].load_be::<u16>();
/// assert_eq!(
/// val,
/// 0b011_1100_0100_1011_1,
/// // KLM NOPQ RSTU VWXY Z
/// );
/// ```
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`body`]: crate::domain::Domain::Region::body
/// [`head`]: crate::domain::Domain::Region::head
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn load_be<M>(&self) -> M
where M: BitMemory {
check::<M>("load", self.len());
match self.domain() {
Domain::Enclave { head, elem, tail } => {
get::<T, M>(elem, Lsb0::mask(head, tail), head.value())
},
Domain::Region { head, body, tail } => {
let mut accum = M::ZERO;
if let Some((head, elem)) = head {
accum =
get::<T, M>(elem, Lsb0::mask(head, None), head.value());
}
for elem in body.iter().map(BitStore::load_value) {
if M::BITS > T::Mem::BITS {
accum <<= T::Mem::BITS;
}
accum |= resize::<T::Mem, M>(elem);
}
if let Some((elem, tail)) = tail {
let shamt = tail.value();
if M::BITS > shamt {
accum <<= shamt;
}
else {
accum = M::ZERO;
}
accum |= get::<T, M>(elem, Lsb0::mask(None, tail), 0);
}
accum
},
}
}
/// Stores into `self`, using little-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element receives the least significant segment of
/// `value`, in the bits at the most significant edge of the element,
/// - its [`body`] slice receives successively more-significant segments of
/// `value`, and
/// - its [`tail`] element receives the most significant segment of `value`,
/// in the bits at the least significant edge of the element.
///
/// If the domain is an [`Enclave`], then `value` is shifted into place and
/// written without any segmentation.
///
/// # Examples
///
/// See the documentation for `<BitSlice<Lsb0, u8> as BitField>::load_le`.
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`head`]: crate::domain::Domain::Region::head
/// [`body`]: crate::domain::Domain::Region::body
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn store_le<M>(&mut self, mut value: M)
where M: BitMemory {
check::<M>("store", self.len());
match self.domain_mut() {
DomainMut::Enclave { head, elem, tail } => {
set::<T, M>(elem, value, Lsb0::mask(head, tail), head.value());
},
DomainMut::Region { head, body, tail } => {
if let Some((head, elem)) = head {
let shamt = head.value();
set::<T, M>(elem, value, Lsb0::mask(head, None), shamt);
if M::BITS > T::Mem::BITS - shamt {
value >>= T::Mem::BITS - shamt;
}
else {
value = M::ZERO;
}
}
for elem in body.iter_mut() {
elem.store_value(resize(value));
if M::BITS > T::Mem::BITS {
value >>= T::Mem::BITS;
}
}
if let Some((elem, tail)) = tail {
set::<T, M>(elem, value, Lsb0::mask(None, tail), 0);
}
},
}
}
/// Stores into `self`, using big-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element receives the most significant segment of `value`,
/// in the bits at the most significant edge of the element,
/// - its [`body`] slice receives successively less-significant segments of
/// `value`, and
/// - its [`tail`] element receives the least significant segment of
/// `value`, in the bits at the least significant edge of the element.
///
/// If the domain is an [`Enclave`], then `value` is shifted into place and
/// written without any segmentation.
///
/// # Examples
///
/// See the documentation for `<BitSlice<Lsb0, u8> as BitField>::load_be`.
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`head`]: crate::domain::Domain::Region::head
/// [`body`]: crate::domain::Domain::Region::body
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn store_be<M>(&mut self, mut value: M)
where M: BitMemory {
check::<M>("store", self.len());
match self.domain_mut() {
DomainMut::Enclave { head, elem, tail } => {
set::<T, M>(elem, value, Lsb0::mask(head, tail), head.value());
},
DomainMut::Region { head, body, tail } => {
if let Some((elem, tail)) = tail {
set::<T, M>(elem, value, Lsb0::mask(None, tail), 0);
let shamt = tail.value();
if M::BITS > shamt {
value >>= shamt;
}
else {
value = M::ZERO;
}
}
for elem in body.iter_mut().rev() {
elem.store_value(resize(value));
if M::BITS > T::Mem::BITS {
value >>= T::Mem::BITS;
}
}
if let Some((head, elem)) = head {
set::<T, M>(
elem,
value,
Lsb0::mask(head, None),
head.value(),
);
}
},
}
}
}
impl<T> BitField for BitSlice<Msb0, T>
where T: BitStore
{
/// Loads from `self`, using little-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element contains the least significant segment of the
/// returned value, in the bits at the least significant edge of the
/// element,
/// - its [`body`] slice contains successively more-significant segments,
/// and
/// - its [`tail`] element contains the most significant segment of the
/// returned value, in the bits at the most significant edge of the
/// element.
///
/// If the domain is an [`Enclave`], then the referent element is merely
/// loaded, shifted, and masked; no recombination of segments is necessary.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Msb0>()[5 .. 21].store_le::<u16>(
/// 0b1_1011_0100_1100_110
/// // K LMNO PQRS TUVW XYZ
/// );
/// assert_eq!(data, [
/// 0b00000_110, 0b0100_1100, 0b1_1011_000
/// // XYZ PQRS TUVW K LMNO
/// ]);
/// let val = data.view_bits::<Msb0>()[5 .. 21].load_le::<u16>();
/// assert_eq!(
/// val,
/// 0b1_1011_0100_1100_110,
/// // K LMNO PQRS TUVW XYZ
/// );
/// ```
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`body`]: crate::domain::Domain::Region::body
/// [`head`]: crate::domain::Domain::Region::head
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn load_le<M>(&self) -> M
where M: BitMemory {
check::<M>("load", self.len());
match self.domain() {
Domain::Enclave { head, elem, tail } => get::<T, M>(
elem,
Msb0::mask(head, tail),
T::Mem::BITS - tail.value(),
),
Domain::Region { head, body, tail } => {
let mut accum = M::ZERO;
if let Some((elem, tail)) = tail {
accum = get::<T, M>(
elem,
Msb0::mask(None, tail),
T::Mem::BITS - tail.value(),
);
}
for elem in body.iter().rev().map(BitStore::load_value) {
if M::BITS > T::Mem::BITS {
accum <<= T::Mem::BITS;
}
accum |= resize::<T::Mem, M>(elem);
}
if let Some((head, elem)) = head {
let shamt = T::Mem::BITS - head.value();
if M::BITS > shamt {
accum <<= shamt;
}
else {
accum = M::ZERO;
}
accum |= get::<T, M>(elem, Msb0::mask(head, None), 0);
}
accum
},
}
}
/// Loads from `self`, using big-endian element ordering if `self` spans
/// more than one element `T`.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element contains the most significant segment of the
/// returned value, in the bits at the least significant edge of the
/// element,
/// - its [`body`] slice contains successively less-significant segments,
/// and
/// - its [`tail`] element contains the least significant segment of the
/// returned value, in the bits at the most significant edge of the
/// element.
///
/// If the domain is an [`Enclave`], then the referent element is merely
/// loaded, shifted, and masked; no recombination of segments is necessary.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = [0u8; 3];
/// data.view_bits_mut::<Msb0>()[5 .. 21].store_be::<u16>(
/// 0b110_1011_1100_0100_1
/// // KLM NOPQ RSTU VWXY Z
/// );
/// assert_eq!(data, [
/// 0b00000_110, 0b1011_1100, 0b0100_1_000
/// // KLM NOPQ RSTU VWXY Z
/// ]);
/// let val = data.view_bits::<Msb0>()[5 .. 21].load_be::<u16>();
/// assert_eq!(
/// val,
/// 0b110_1011_1100_0100_1,
/// // KLM NOPQ RSTU VWXY Z
/// );
/// ```
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`body`]: crate::domain::Domain::Region::body
/// [`head`]: crate::domain::Domain::Region::head
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn load_be<M>(&self) -> M
where M: BitMemory {
check::<M>("load", self.len());
match self.domain() {
Domain::Enclave { head, elem, tail } => get::<T, M>(
elem,
Msb0::mask(head, tail),
T::Mem::BITS - tail.value(),
),
Domain::Region { head, body, tail } => {
let mut accum = M::ZERO;
if let Some((head, elem)) = head {
accum = get::<T, M>(elem, Msb0::mask(head, None), 0);
}
for elem in body.iter().map(BitStore::load_value) {
if M::BITS > T::Mem::BITS {
accum <<= T::Mem::BITS;
}
accum |= resize::<T::Mem, M>(elem);
}
if let Some((elem, tail)) = tail {
let shamt = tail.value();
if M::BITS > shamt {
accum <<= shamt;
}
else {
accum = M::ZERO;
}
accum |= get::<T, M>(
elem,
Msb0::mask(None, tail),
T::Mem::BITS - shamt,
);
}
accum
},
}
}
/// Stores into `self`, using little-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element receives the least significant segment of
/// `value`, in the bits at the least significant edge of the element,
/// - its [`body`] slice receives successively more-significant segments of
/// `value`, and
/// - its [`tail`] element receives the most significant segment of `value`,
/// in the bits at the most significant edge of the element.
///
/// If the domain is an [`Enclave`], then `value` is shifted into place and
/// written without any segmentation.
///
/// # Examples
///
/// See the documentation for `<BitSlice<Msb0, u8> as BitField>::load_le`.
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`head`]: crate::domain::Domain::Region::head
/// [`body`]: crate::domain::Domain::Region::body
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn store_le<M>(&mut self, mut value: M)
where M: BitMemory {
check::<M>("store", self.len());
match self.domain_mut() {
DomainMut::Enclave { head, elem, tail } => set::<T, M>(
elem,
value,
Msb0::mask(head, tail),
T::Mem::BITS - tail.value(),
),
DomainMut::Region { head, body, tail } => {
if let Some((head, elem)) = head {
set::<T, M>(elem, value, Msb0::mask(head, None), 0);
let shamt = T::Mem::BITS - head.value();
if M::BITS > shamt {
value >>= shamt;
}
else {
value = M::ZERO;
}
}
for elem in body.iter_mut() {
elem.store_value(resize(value));
if M::BITS > T::Mem::BITS {
value >>= T::Mem::BITS;
}
}
if let Some((elem, tail)) = tail {
set::<T, M>(
elem,
value,
Msb0::mask(None, tail),
T::Mem::BITS - tail.value(),
);
}
},
}
}
/// Stores into `self`, using big-endian element ordering if `self` spans
/// more than one `T` element.
///
/// If [`self.domain()`] produces a [`Domain::Region`], then:
///
/// - its [`head`] element receives the most significant segment of `value`,
/// in the bits at the least significant edge of the element,
/// - its [`body`] slice receives successively less-significant segments of
/// `value`, and
/// - its [`tail`] element receives the least significant segment of
/// `value`, in the bits at the most significant edge of the element.
///
/// If the domain is an [`Enclave`], then `value` is shifted into place and
/// written without any segmentation.
///
/// # Examples
///
/// See the documentation for `<BitSlice<Lsb0, u8> as BitField>::load_be`.
///
/// [`Domain::Region`]: crate::domain::Domain::Region
/// [`Enclave`]: crate::domain::Domain::Enclave
/// [`head`]: crate::domain::Domain::Region::head
/// [`body`]: crate::domain::Domain::Region::body
/// [`self.domain()`]: crate::slice::BitSlice::domain
/// [`tail`]: crate::domain::Domain::Region::tail
fn store_be<M>(&mut self, mut value: M)
where M: BitMemory {
check::<M>("store", self.len());
match self.domain_mut() {
DomainMut::Enclave { head, elem, tail } => set::<T, M>(
elem,
value,
Msb0::mask(head, tail),
T::Mem::BITS - tail.value(),
),
DomainMut::Region { head, body, tail } => {
if let Some((elem, tail)) = tail {
set::<T, M>(
elem,
value,
Msb0::mask(None, tail),
T::Mem::BITS - tail.value(),
);
if M::BITS > tail.value() {
value >>= tail.value();
}
else {
value = M::ZERO;
}
}
for elem in body.iter_mut().rev() {
elem.store_value(resize(value));
if M::BITS > T::Mem::BITS {
value >>= T::Mem::BITS;
}
}
if let Some((head, elem)) = head {
set::<T, M>(elem, value, Msb0::mask(head, None), 0);
}
},
}
}
}
impl<O, V> BitField for BitArray<O, V>
where
O: BitOrder,
V: BitView,
BitSlice<O, V::Store>: BitField,
{
fn load_le<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_le()
}
fn load_be<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_be()
}
fn store_le<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_le(value)
}
fn store_be<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_be(value)
}
}
#[cfg(feature = "alloc")]
impl<O, T> BitField for BitBox<O, T>
where
O: BitOrder,
T: BitStore,
BitSlice<O, T>: BitField,
{
fn load_le<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_le()
}
fn load_be<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_be()
}
fn store_le<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_le(value)
}
fn store_be<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_be(value)
}
}
#[cfg(feature = "alloc")]
impl<O, T> BitField for BitVec<O, T>
where
O: BitOrder,
T: BitStore,
BitSlice<O, T>: BitField,
{
fn load_le<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_le()
}
fn load_be<M>(&self) -> M
where M: BitMemory {
self.as_bitslice().load_be()
}
fn store_le<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_le(value)
}
fn store_be<M>(&mut self, value: M)
where M: BitMemory {
self.as_mut_bitslice().store_be(value)
}
}
/// Asserts that a slice length is within a memory element width.
///
/// # Panics
///
/// This panics if len is 0, or wider than [`M::BITS`].
///
/// [`M::BITS`]: crate::mem::BitMemory::BITS
fn check<M>(action: &'static str, len: usize)
where M: BitMemory {
if !(1 ..= M::BITS as usize).contains(&len) {
panic!(
"Cannot {} {} bits from a {}-bit region",
action,
M::BITS,
len,
);
}
}
/** Reads a value out of a section of a memory element.
This function is used to extract a portion of an `M` value from a portion of a
`T` value. The [`BitField`] implementations call it as they assemble a complete
`M`. It performs the following steps:
1. the referent value of the `elem` pointer is copied into local memory,
2. `mask`ed to discard the portions of `*elem` that are not live,
3. shifted to the LSedge of the [`T::Mem`] temporary,
4. then `resize`d into an `M` value.
This is the exact inverse of `set`.
# Type Parameters
- `T`: The [`BitStore`] type of a [`BitSlice`] that is the source of a read
event.
- `M`: The local type of the data contained in that [`BitSlice`].
# Parameters
- `elem`: An aliased reference to a single element of a [`BitSlice`] storage.
This is required to remain aliased, as other write-capable references to the
location may exist.
- `mask`: A [`BitMask`] of the live region of the value at `*elem` to be used as
the contents of the returned value.
- `shamt`: The distance of the least significant bit of the mask region from the
least significant edge of the [`T::Mem`] fetched value.
# Returns
`resize((*elem & mask) >> shamt)`
[`BitField`]: crate::field::BitField
[`BitMask`]: crate::index::BitMask
[`BitSlice`]: crate::slice::BitSlice
[`BitStore`]: crate::store::BitStore
[`T::Mem`]: crate::store::BitStore::Mem
**/
// The trait resolution system fails here, and only resolves to `<&usize>` as
// the RHS operand.
#[allow(clippy::op_ref)]
fn get<T, M>(elem: &T, mask: BitMask<T::Mem>, shamt: u8) -> M
where
T: BitStore,
M: BitMemory,
{
// Read the value out of the `elem` reference
elem.load_value()
// Mask it against the slot
.pipe(|val| val & &mask.value())
// Shift it down to the LSedge
.pipe(|val| val >> &(shamt as usize))
// And resize to the expected output
.pipe(resize::<T::Mem, M>)
}
/** Writes a value into a section of a memory element.
This function is used to emplace a portion of an `M` value into a portion of a
`T` value. The [`BitField`] implementations call it as they disassemble a
complete `M`. It performs the following steps:
1. the provided `value` is `resize`d from `M` to [`T::Mem`],
2. then shifted from the LSedge of the [`T::Mem`] temporary by `shamt`,
3. `mask`ed to discard the portions of `value` that are not live,
4. then written into the `mask`ed portion of `*elem`.
This is the exact inverse of `get`.
# Type Parameters
- `T`: The [`BitStore`] type of a [`BitSlice`] that is the sink of a write event.
- `M`: The local type of the data being written into that [`BitSlice`].
# Parameters
- `elem`: An aliased reference to a single element of a [`BitSlice`] storage.
- `value`: The value whose least-significant bits will be written into the
subsection of `*elt` covered by `mask`.
- `mask`: A `BitMask` of the live region of the value at `*elem` to be used as
a filter on the provided value.
- `shamt`: The distance of the least significant bit of the mask region from the
least significant edge of the [`T::Mem`] destination value.
# Effects
`*elem &= !mask; *elem |= (resize(value) << shamt) & mask;`
[`BitField`]: crate::field::BitField
[`BitMask`]: crate::index::BitMask
[`BitSlice`]: crate::slice::BitSlice
[`BitStore`]: crate::store::BitStore
[`T::Mem`]: crate::store::BitStore::Mem
**/
#[allow(clippy::op_ref)]
fn set<T, M>(elem: &T::Access, value: M, mask: BitMask<T::Mem>, shamt: u8)
where
T: BitStore,
M: BitMemory,
{
// Convert the `mask` type to fit into the accessor.
let mask = BitMask::new(mask.value());
let value = value
// Resize the value to the expected input
.pipe(resize::<M, T::Mem>)
// Shift it up from the LSedge
.pipe(|val| val << &(shamt as usize))
// And mask it to the slot
.pipe(|val| mask & val);
// Erase the slot
elem.clear_bits(mask);
// And write the shift/masked value into it
elem.set_bits(value);
}
/** Resizes a value from one register width to another.
This zero-extends or truncates its source value in order to fit in the target
type.
# Type Parameters
- `T`: The initial register type of the value to resize.
- `U`: The final register type of the resized value.
# Parameters
- `value`: Any register value.
# Returns
`value`, either zero-extended if `U` is wider than `T` or truncated if `U` is
narrower than `T`.
**/
fn resize<T, U>(value: T) -> U
where
T: BitMemory,
U: BitMemory,
{
let mut out = U::ZERO;
let size_t = mem::size_of::<T>();
let size_u = mem::size_of::<U>();
unsafe {
resize_inner::<T, U>(&value, &mut out, size_t, size_u);
}
out
}
/// Performs little-endian byte-order register resizing.
#[cfg(target_endian = "little")]
unsafe fn resize_inner<T, U>(
src: &T,
dst: &mut U,
size_t: usize,
size_u: usize,
) {
// In LE, the least significant byte is the base address, so resizing is
// just a memcpy into a zeroed slot, taking only the smaller width.
ptr::copy_nonoverlapping(
src as *const T as *const u8,
dst as *mut U as *mut u8,
core::cmp::min(size_t, size_u),
);
}
/// Performs big-endian byte-order register resizing.
#[cfg(target_endian = "big")]
unsafe fn resize_inner<T, U>(
src: &T,
dst: &mut U,
size_t: usize,
size_u: usize,
) {
let src = src as *const T as *const u8;
let dst = dst as *mut U as *mut u8;
// In BE, shrinking a value requires moving the source base pointer up,
if size_t > size_u {
ptr::copy_nonoverlapping(src.add(size_t - size_u), dst, size_u);
}
// While expanding a value requires moving the destination base pointer up.
else {
ptr::copy_nonoverlapping(src, dst.add(size_u - size_t), size_t);
}
}
#[cfg(not(any(target_endian = "big", target_endian = "little")))]
compile_fail!(concat!(
"This architecture is currently not supported. File an issue at ",
env!(CARGO_PKG_REPOSITORY)
));
#[cfg(feature = "std")]
mod io;
#[cfg(test)]
mod tests;
// These tests are purely mathematical, and do not need to run more than once.
#[cfg(all(test, feature = "std", not(miri), not(tarpaulin)))]
mod permutation_tests;