1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
//! A pointer to a single bit.
use crate::{
access::BitAccess,
index::{
BitIdx,
BitIdxError,
},
mem::BitMemory,
mutability::{
Const,
Mut,
Mutability,
},
order::{
BitOrder,
Lsb0,
},
ptr::{
Address,
AddressError,
BitPtrRange,
BitRef,
BitSpan,
BitSpanError,
},
store::BitStore,
};
use wyz::fmt::FmtForward;
use core::{
any::{
type_name,
TypeId,
},
cmp,
convert::{
Infallible,
TryFrom,
TryInto,
},
fmt::{
self,
Debug,
Display,
Formatter,
Pointer,
},
hash::{
Hash,
Hasher,
},
marker::PhantomData,
ptr,
};
/** Pointer to an individual bit in a memory element. Analagous to `*bool`.
# Original
[`*bool`](https://doc.rust-lang.org/std/primitive.pointer.html) and
[`NonNull<bool>`](core::ptr::NonNull)
# API Differences
This must be a structure, rather than a raw pointer, for two reasons:
- It is larger than a raw pointer.
- Raw pointers are not `#[fundamental]` and cannot have foreign implementations.
Additionally, rather than create two structures to map to `*const bool` and
`*mut bool`, respectively, this takes mutability as a type parameter.
Because the encoded span pointer requires that memory addresses are well
aligned, this type also imposes the alignment requirement and refuses
construction for misaligned element addresses. While this type is used in the
API equivalent of ordinary raw pointers, it is restricted in value to only be
*references* to memory elements.
# ABI Differences
This has alignment `1`, rather than an alignment to the processor word. This is
necessary for some crate-internal optimizations.
# Type Parameters
- `M`: Marks whether the pointer permits mutation of memory through it.
- `O`: The ordering of bits within a memory element.
- `T`: A memory type used to select both the register size and the access
behavior when performing loads/stores.
# Usage
This structure is used as the [`bitvec`] equivalent to `*bool`. It is used in
all raw-pointer APIs, and provides behavior to emulate raw pointers. It cannot
be directly dereferenced, as it is not a pointer; it can only be transformed
back into higher referential types, or used in [`bitvec::ptr`] free functions.
These pointers can never be null, or misaligned.
[`bitvec`]: crate
[`bitvec::ptr`]: crate::ptr
**/
#[repr(C, packed)]
pub struct BitPtr<M, O = Lsb0, T = usize>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
/// Memory addresses must be well-aligned and non-null.
addr: Address<M, T>,
/// The index of the referent bit within `*addr`.
head: BitIdx<T::Mem>,
/// The ordering used to select the bit at `head` in `*addr`.
_ord: PhantomData<O>,
}
impl<M, O, T> BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
/// The dangling pointer. This selects the starting bit of the `T` dangling
/// address.
pub const DANGLING: Self = Self {
addr: Address::DANGLING,
head: BitIdx::ZERO,
_ord: PhantomData,
};
/// Loads the address field, sidestepping any alignment problems.
///
/// This is the only safe way to access `(&self).addr`. Do not perform field
/// access on `.addr` through a reference except through this method.
#[cfg_attr(not(tarpaulin_include), inline(always))]
pub(crate) fn get_addr(&self) -> Address<M, T> {
unsafe {
ptr::read_unaligned(self as *const Self as *const Address<M, T>)
}
}
/// Tries to construct a `BitPtr` from a memory location and a bit index.
///
/// # Type Parameters
///
/// - `A`: This accepts anything that may be used as a memory address.
///
/// # Parameters
///
/// - `addr`: The memory address to use in the `BitPtr`. If this value
/// violates the [`Address`] rules, then its conversion error will be
/// returned.
/// - `head`: The index of the bit in `*addr` that this pointer selects. If
/// this value violates the [`BitIdx`] rules, then its conversion error
/// will be returned.
///
/// # Returns
///
/// A new `BitPtr`, selecting the memory location `addr` and the bit `head`.
/// If either `addr` or `head` are invalid values, then this propagates
/// their error.
///
/// [`Address`]: crate::ptr::Address
/// [`BitIdx`]: crate::index::BitIdx
#[inline]
pub fn try_new<A>(addr: A, head: u8) -> Result<Self, BitPtrError<T>>
where
A: TryInto<Address<M, T>>,
BitPtrError<T>: From<A::Error>,
{
Ok(Self::new(addr.try_into()?, BitIdx::new(head)?))
}
/// Constructs a `BitPtr` from a memory location and a bit index.
///
/// Since this requires that the address and bit index are already
/// well-formed, it can assemble the `BitPtr` without inspecting their
/// values.
///
/// # Parameters
///
/// - `addr`: A well-formed memory address of `T`.
/// - `head`: A well-formed bit index within `T`.
///
/// # Returns
///
/// A `BitPtr` selecting the `head` bit in the location `addr`.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn new(addr: Address<M, T>, head: BitIdx<T::Mem>) -> Self {
Self {
addr,
head,
_ord: PhantomData,
}
}
/// Decomposes the pointer into its element address and bit index.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// - `.0`: The memory address in which the referent bit is located.
/// - `.1`: The index of the referent bit within `*.0`.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn raw_parts(self) -> (Address<M, T>, BitIdx<T::Mem>) {
(self.addr, self.head)
}
/// Produces a `BitSpan`, starting at `self` and running for `bits`.
///
/// # Parameters
///
/// - `self`: The base bit-address of the returned span descriptor.
/// - `bits`: The length in bits of the returned span descriptor.
///
/// # Returns
///
/// This returns an error if the combination of `self` and `bits` violates
/// any of `BitSpan`’s requirements; otherwise, it encodes `self` and `bits`
/// into a span descriptor and returns it. Conversion into a `BitSlice`
/// pointer or reference is left to the caller.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) fn span(
self,
bits: usize,
) -> Result<BitSpan<M, O, T>, BitSpanError<T>> {
BitSpan::new(self.addr, self.head, bits)
}
/// Produces a `BitSpan`, starting at `self` and running for `bits`.
///
/// This does not perform any validity checking; it only encodes the
/// arguments into a `BitSpan`.
///
/// # Parameters
///
/// - `self`: The base bit-address of the returned span descriptor.
/// - `bits`: The length in bits of the returned span descriptor.
///
/// # Retuns
///
/// `self` and `bits` encoded into a `BitSpan`. This `BitSpan` may be
/// semantically invalid, and it may have modulated its length.
///
/// # Safety
///
/// This should only be called with values that had previously been
/// extracted from a `BitSpan`.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) unsafe fn span_unchecked(self, bits: usize) -> BitSpan<M, O, T> {
BitSpan::new_unchecked(self.addr, self.head, bits)
}
/// Produces a pointer range starting at `self` and running for `count`
/// bits.
///
/// This calls `self.add(count)`, then bundles the resulting pointer as the
/// high end of the produced range.
///
/// # Parameters
///
/// - `self`: The starting pointer of the produced range.
/// - `count`: The number of bits that the produced range includes.
///
/// # Returns
///
/// A half-open range of pointers, beginning at (and including) `self`,
/// running for `count` bits, and ending at (and excluding)
/// `self.add(count)`.
///
/// # Safety
///
/// `count` cannot violate the constraints in [`add`].
///
/// [`add`]: Self::add
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn range(self, count: usize) -> BitPtrRange<M, O, T> {
BitPtrRange {
start: self,
end: self.add(count),
}
}
/// Converts a bit-pointer into a proxy bit-reference.
///
/// # Safety
///
/// The pointer must be valid to dereference.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn into_bitref<'a>(self) -> BitRef<'a, M, O, T> {
BitRef::from_bitptr(self)
}
/// Removes write permissions from a bit-pointer.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn immut(self) -> BitPtr<Const, O, T> {
let Self { addr, head, .. } = self;
BitPtr {
addr: addr.immut(),
head,
..BitPtr::DANGLING
}
}
/// Adds write permissions to a bit-pointer.
///
/// # Safety
///
/// This pointer must have been derived from a `*mut` pointer.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn assert_mut(self) -> BitPtr<Mut, O, T> {
let Self { addr, head, .. } = self;
BitPtr {
addr: addr.assert_mut(),
head,
..BitPtr::DANGLING
}
}
// `pointer` inherent API
/// Tests if a bit-pointer is the null value.
///
/// This is always false, as `BitPtr` is a `NonNull` internally. Use
/// `Option<BitPtr>` to express the potential for a null pointer.
///
/// # Original
///
/// [`pointer::is_null`](https://doc.rust-lang.org/std/primitive.pointer.html#method.is_null)
#[inline(always)]
#[cfg(not(tarpaulin_include))]
#[deprecated = "`BitPtr` is never null"]
pub fn is_null(self) -> bool {
false
}
/// Casts to a bit-pointer of another storage type, preserving the
/// bit-ordering and mutability permissions.
///
/// # Original
///
/// [`pointer::cast`](https://doc.rust-lang.org/std/primitive.pointer.html#method.cast)
///
/// # Behavior
///
/// This is not a free typecast! It encodes the pointer as a crate-internal
/// span descriptor, casts the span descriptor to the `U` storage element
/// parameter, then decodes the result. This preserves general correctness,
/// but will likely change both the virtual and physical bits addressed by
/// this pointer.
#[inline]
pub fn cast<U>(self) -> BitPtr<M, O, U>
where U: BitStore {
let (addr, head, _) =
unsafe { self.span_unchecked(1) }.cast::<U>().raw_parts();
BitPtr::new(addr, head)
}
/// Produces a proxy reference to the referent bit.
///
/// Because `BitPtr` is a non-null, well-aligned, pointer, this never
/// returns `None`.
///
/// # Original
///
/// [`pointer::as_ref`](https://doc.rust-lang.org/std/primitive.pointer.html#method.as_ref)
///
/// # API Differences
///
/// This produces a proxy type rather than a true reference. The proxy
/// implements `Deref<Target = bool>`, and can be converted to `&bool` with
/// `&*`.
///
/// # Safety
///
/// Since `BitPtr` does not permit null or misaligned pointers, this method
/// will always dereference the pointer and you must ensure the following
/// conditions are met:
///
/// - the pointer must be dereferencable as defined in the standard library
/// documentation
/// - the pointer must point to an initialized instance of `T`
/// - you must ensure that no other pointer will race to modify the referent
/// location while this call is reading from memory to produce the proxy
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 1u8;
/// let ptr = BitPtr::<_, Lsb0, _>::from_ref(&data);
/// let val = unsafe { ptr.as_ref() }.unwrap();
/// assert!(*val);
/// ```
#[inline]
pub unsafe fn as_ref<'a>(self) -> Option<BitRef<'a, Const, O, T>> {
Some(BitRef::from_bitptr(self.immut()))
}
/// Calculates the offset from a pointer.
///
/// `count` is in units of bits.
///
/// # Original
///
/// [`pointer::offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.offset)
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined
/// Behavior:
///
/// - Both the starting and resulting pointer must be either in bounds or
/// one byte past the end of the same allocated object. Note that in Rust,
/// every (stack-allocated) variable is considered a separate allocated
/// object.
/// - The computed offset, **in bytes**, cannot overflow an `isize`.
/// - The offset being in bounds cannot rely on “wrapping around” the
/// address space. That is, the infinite-precision sum, **in bytes** must
/// fit in a `usize`.
///
/// These pointers are almost always derived from [`BitSlice`] regions,
/// which have an encoding limitation that the high three bits of the length
/// counter are zero, so `bitvec` pointers are even less likely than
/// ordinary pointers to run afoul of these limitations.
///
/// Use [`wrapping_offset`] if you expect to risk hitting the high edge of
/// the address space.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 5u8;
/// let ptr = BitPtr::<_, Lsb0, _>::from_ref(&data);
/// assert!(unsafe { ptr.read() });
/// assert!(!unsafe { ptr.offset(1).read() });
/// assert!(unsafe { ptr.offset(2).read() });
/// ```
///
/// [`BitSlice`]: crate::slice::BitSlice
/// [`wrapping_offset`]: Self::wrapping_offset
#[inline]
pub unsafe fn offset(self, count: isize) -> Self {
let (elts, head) = self.head.offset(count);
Self::new(self.addr.offset(elts), head)
}
/// Calculates the offset from a pointer using wrapping arithmetic.
///
/// `count` is in units of bits.
///
/// # Original
///
/// [`pointer::wrapping_offset`](https://doc.rust/lang.org/std/primitive.pointer.html#method.wrapping_offset)
///
/// # Safety
///
/// The resulting pointer does not need to be in bounds, but it is
/// potentially hazardous to dereference.
///
/// In particular, the resulting pointer remains attached to the same
/// allocated object that `self` points to. It may *not* be used to access a
/// different allocated object. Note that in Rust, every (stack-allocated)
/// variable is considered a separate allocated object.
///
/// In other words, `x.wrapping_offset((y as usize).wrapping_sub(x as
/// usize)` is not the same as `y`, and dereferencing it is undefined
/// behavior unless `x` and `y` point into the same allocated object.
///
/// Compared to [`offset`], this method basically delays the requirement of
/// staying within the same allocated object: [`offset`] is immediate
/// Undefined Behavior when crossing object boundaries; `wrapping_offset`
/// produces a pointer but still leads to Undefined Behavior if that pointer
/// is dereferenced. [`offset`] can be optimized better and is thus
/// preferable in performance-sensitive code.
///
/// If you need to cross object boundaries, destructure this pointer into
/// its base address and bit index, cast the base address to an integer, and
/// do the arithmetic in the purely integer space.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0u8;
/// let mut ptr = BitPtr::<_, Lsb0, _>::from_ref(&data);
/// let end = ptr.wrapping_offset(8);
/// while ptr < end {
/// # #[cfg(feature = "std")] {
/// println!("{}", unsafe { ptr.read() });
/// # }
/// ptr = ptr.wrapping_offset(3);
/// }
/// ```
///
/// [`offset`]: Self::offset
#[inline]
pub fn wrapping_offset(self, count: isize) -> Self {
let (elts, head) = self.head.offset(count);
Self::new(self.addr.wrapping_offset(elts), head)
}
/// Calculates the distance between two pointers. The returned value is in
/// units of bits.
///
/// This function is the inverse of [`offset`].
///
/// # Original
///
/// [`pointer::offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.offset_from)
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined
/// Behavior:
///
/// - Both the starting and other pointer must be either in bounds or one
/// byte past the end of the same allocated object. Note that in Rust,
/// every (stack-allocated) variable is considered a separate allocated
/// object.
/// - Both pointers must be *derived from* a pointer to the same object.
/// - The distance between the pointers, **in bytes**, cannot overflow an
/// `isize`.
/// - The distance being in bounds cannot rely on “wrapping around” the
/// address space.
///
/// These pointers are almost always derived from [`BitSlice`] regions,
/// which have an encoding limitation that the high three bits of the length
/// counter are zero, so `bitvec` pointers are even less likely than
/// ordinary pointers to run afoul of these limitations.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0u16;
/// let base = BitPtr::<_, Lsb0, _>::from_ref(&data);
/// let low = unsafe { base.add(5) };
/// let high = unsafe { low.add(6) };
/// unsafe {
/// assert_eq!(high.offset_from(low), 6);
/// assert_eq!(low.offset_from(high), -6);
/// assert_eq!(low.offset(6), high);
/// assert_eq!(high.offset(-6), low);
/// }
/// ```
///
/// *Incorrect* usage:
///
/// ```rust,no_run
/// use bitvec::prelude::*;
///
/// let a = 0u8;
/// let b = !0u8;
/// let a_ptr = BitPtr::<_, Lsb0, _>::from_ref(&a);
/// let b_ptr = BitPtr::<_, Lsb0, _>::from_ref(&b);
/// let diff = (b_ptr.pointer() as isize)
/// .wrapping_sub(a_ptr.pointer() as isize)
/// // Remember: raw pointers are byte-addressed,
/// // but these are bit-addressed.
/// .wrapping_mul(8);
/// // Create a pointer to `b`, derived from `a`.
/// let b_ptr_2 = a_ptr.wrapping_offset(diff);
///
/// // The pointers are *arithmetically* equal now
/// assert_eq!(b_ptr, b_ptr_2);
/// // Undefined Behavior!
/// unsafe {
/// b_ptr_2.offset_from(b_ptr);
/// }
/// ```
///
/// [`BitSlice`]: crate::slice::BitSlice
/// [`offset`]: Self::offset
#[inline]
pub unsafe fn offset_from(self, origin: Self) -> isize {
/* Miri complains when performing this arithmetic on pointers. To avoid
both its costs, and the implicit scaling present in pointer arithmetic,
this uses pure numeric arithmetic on the address values.
*/
self.addr
.value()
.wrapping_sub(origin.addr.value())
// Pointers step by `T`, but **address values** step by `u8`.
.wrapping_mul(<u8 as BitMemory>::BITS as usize)
// `self.head` moves the end farther from origin,
.wrapping_add(self.head.value() as usize)
// and `origin.head` moves the origin closer to the end.
.wrapping_sub(origin.head.value() as usize) as isize
}
/// Calculates the offset from a pointer (convenience for `.offset(count as
/// isize)`).
///
/// `count` is in units of bits.
///
/// # Original
///
/// [`pointer::add`](https://doc.rust-lang.org/std/primitive.pointer.html#method.add)
///
/// # Safety
///
/// See [`offset`].
///
/// [`offset`]: Self::offset
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn add(self, count: usize) -> Self {
self.offset(count as isize)
}
/// Calculates the offset from a pointer (convenience for `.offset((count as
/// isize).wrapping_neg())`).
///
/// `count` is in units of bits.
///
/// # Original
///
/// [`pointer::sub`](https://doc.rust-lang.org/std/primitive.pointer.html#method.sub)
///
/// # Safety
///
/// See [`offset`].
///
/// [`offset`]: Self::offset
#[inline]
pub unsafe fn sub(self, count: usize) -> Self {
self.offset((count as isize).wrapping_neg())
}
/// Calculates the offset from a pointer using wrapping arithmetic
/// (convenience for `.wrapping_offset(count as isize)`).
///
/// # Original
///
/// [`pointer::wrapping_add`](https://doc.rust-lang.org/std/primitive.pointer.html#method.wrapping_add)
///
/// # Safety
///
/// See [`wrapping_offset`].
///
/// [`wrapping_offset`]: Self::wrapping_offset
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn wrapping_add(self, count: usize) -> Self {
self.wrapping_offset(count as isize)
}
/// Calculates the offset from a pointer using wrapping arithmetic
/// (convenience for `.wrapping_offset((count as isize).wrapping_neg())`).
///
/// # Original
///
/// [`pointer::wrapping_sub`](https://doc.rust-lang.org/std/primitive.pointer.html#method.wrapping_sub)
///
/// # Safety
///
/// See [`wrapping_offset`].
///
/// [`wrapping_offset`]: Self::wrapping_offset
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn wrapping_sub(self, count: usize) -> Self {
self.wrapping_offset((count as isize).wrapping_neg())
}
/// Reads the bit from `*self`.
///
/// # Original
///
/// [`pointer::read`](https://doc.rust-lang.org/std/primitive.pointer.html#method.read)
///
/// # Safety
///
/// See [`ptr::read`] for safety concerns and examples.
///
/// [`ptr::read`]: crate::ptr::read
#[inline]
pub unsafe fn read(self) -> bool {
(&*self.addr.to_const())
.load_value()
.get_bit::<O>(self.head)
}
/// Performs a volatile read of the bit from `self`.
///
/// Volatile operations are intended to act on I/O memory, and are
/// guaranteed to not be elided or reördered by the compiler across other
/// volatile operations.
///
/// # Original
///
/// [`pointer::read_volatile`](https://doc.rust-lang.org/std/primitive.pointer.html#method.read_volatile)
///
/// # Safety
///
/// See [`ptr::read_volatile`] for safety concerns and examples.
///
/// [`ptr::read_volatile`]: crate::ptr::read_volatile
#[inline]
pub unsafe fn read_volatile(self) -> bool {
self.addr.to_const().read_volatile().get_bit::<O>(self.head)
}
/// Copies `count` bits from `self` to `dest`. The source and destination
/// may overlap.
///
/// NOTE: this has the *same* argument order as [`ptr::copy`].
///
/// # Original
///
/// [`pointer::copy_to`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_to)
///
/// # Safety
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy
#[inline]
pub unsafe fn copy_to<O2, T2>(self, dest: BitPtr<Mut, O2, T2>, count: usize)
where
O2: BitOrder,
T2: BitStore,
{
// If the orderings match, then overlap is permitted and defined.
if TypeId::of::<O>() == TypeId::of::<O2>() {
let (addr, head) = dest.raw_parts();
let dst = BitPtr::<Mut, O, T2>::new(addr, head);
let src_pair = self.range(count);
let rev = src_pair.contains(&dst);
let iter = src_pair.zip(dest.range(count));
if rev {
for (from, to) in iter.rev() {
to.write(from.read());
}
}
else {
for (from, to) in iter {
to.write(from.read());
}
}
}
else {
// If the orderings differ, then it is undefined behavior to
// overlap in memory.
self.copy_to_nonoverlapping(dest, count);
}
}
/// Copies `count` bits from `self` to `dest`. The source and destination
/// may *not* overlap.
///
/// NOTE: this has the *same* argument order as
/// [`ptr::copy_nonoverlapping`].
///
/// # Original
///
/// [`pointer::copy_to_nonoverlapping`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_to_nonoverlapping)
///
/// # Safety
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`](crate::ptr::copy_nonoverlapping)
#[inline]
pub unsafe fn copy_to_nonoverlapping<O2, T2>(
self,
dest: BitPtr<Mut, O2, T2>,
count: usize,
) where
O2: BitOrder,
T2: BitStore,
{
for (from, to) in self.range(count).zip(dest.range(count)) {
to.write(from.read());
}
}
/// Computes the offset (in bits) that needs to be applied to the pointer in
/// order to make it aligned to `align`.
///
/// “Alignment” here means that the pointer is selecting the start bit of a
/// memory location whose address satisfies the requested alignment.
///
/// `align` is measured in **bytes**. If you wish to align your bit-pointer
/// to a specific fraction (½, ¼, or ⅛ of one byte), please file an issue
/// and this functionality will be added to [`BitIdx`].
///
/// # Original
///
/// [`pointer::align_offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.align_offset)
///
/// If the base-element address of the pointer is already aligned to
/// `align`, then this will return the bit-offset required to select the
/// first bit of the successor element.
///
/// If it is not possible to align the pointer, the implementation returns
/// `usize::MAX`. It is permissible for the implementation to *always*
/// return `usize::MAX`. Only your algorithm’s performance can depend on
/// getting a usable offset here, not its correctness.
///
/// The offset is expressed in number of bits, and not `T` elements or
/// bytes. The value returned can be used with the [`wrapping_add`] method.
///
/// # Safety
///
/// There are no guarantees whatsoëver that offsetting the pointer will not
/// overflow or go beyond the allocation that the pointer points into. It is
/// up to the caller to ensure that the returned offset is correct in all
/// terms other than alignment.
///
/// # Panics
///
/// The function panics if `align` is not a power-of-two.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = [0u8; 3];
/// let ptr = BitPtr::<_, Lsb0, _>::from_ref(&data[0]);
/// let ptr = unsafe { ptr.add(2) };
/// let count = ptr.align_offset(2);
/// assert!(count > 0);
/// ```
///
/// [`BitIdx`]: crate::index::BitIdx
/// [`wrapping_add`]: Self::wrapping_add
#[inline]
pub fn align_offset(self, align: usize) -> usize {
let width = <T::Mem as BitMemory>::BITS as usize;
match (
self.addr.to_const().align_offset(align),
self.head.value() as usize,
) {
(0, 0) => 0,
(0, head) => align * 8 - head,
(usize::MAX, _) => !0,
(elts, head) => elts.wrapping_mul(width).wrapping_sub(head),
}
}
}
impl<O, T> BitPtr<Const, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Constructs a `BitPtr` from an element reference.
///
/// # Parameters
///
/// - `elem`: A borrowed memory element.
///
/// # Returns
///
/// A read-only bit-pointer to the zeroth bit in the `*elem` location.
#[inline]
pub fn from_ref(elem: &T) -> Self {
Self::new(elem.into(), BitIdx::ZERO)
}
/// Attempts to construct a `BitPtr` from an element location.
///
/// # Parameters
///
/// - `elem`: A read-only element address.
///
/// # Returns
///
/// A read-only bit-pointer to the zeroth bit in the `*elem` location, if
/// `elem` is well-formed.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn from_ptr(elem: *const T) -> Result<Self, BitPtrError<T>> {
Self::try_new(elem, 0)
}
/// Constructs a `BitPtr` from a slice reference.
///
/// This differs from [`from_ref`] in that the returned pointer keeps its
/// provenance over the entire slice, whereas producing a pointer to the
/// base bit of a slice with `BitPtr::from_ref(&slice[0])` narrows its
/// provenance to only the `slice[0]` element, and calling [`add`] to leave
/// that element, even remaining in the slice, may cause UB.
///
/// # Parameters
///
/// - `slice`: An immutabily borrowed slice of memory.
///
/// # Returns
///
/// A read-only bit-pointer to the zeroth bit in the base location of the
/// slice.
///
/// This pointer has provenance over the entire `slice`, and may safely use
/// [`add`] to traverse memory elements as long as it stays within the
/// slice.
///
/// [`add`]: Self::add
/// [`from_ref`]: Self::from_ref
#[inline]
pub fn from_slice(slice: &[T]) -> Self {
Self::new(
unsafe { Address::new_unchecked(slice.as_ptr() as usize) },
BitIdx::ZERO,
)
}
/// Gets the pointer to the base memory location containing the referent
/// bit.
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn pointer(&self) -> *const T {
self.get_addr().to_const()
}
}
impl<O, T> BitPtr<Mut, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Constructs a `BitPtr` from an element reference.
///
/// # Parameters
///
/// - `elem`: A mutably borrowed memory element.
///
/// # Returns
///
/// A write-capable bit-pointer to the zeroth bit in the `*elem` location.
///
/// Note that even if `elem` is an address within a contiguous array or
/// slice, the returned bit-pointer only has provenance for the `elem`
/// location, and no other.
///
/// # Safety
///
/// The exclusive borrow of `elem` is released after this function returns.
/// However, you must not use any other pointer than that returned by this
/// function to view or modify `*elem`, unless the `T` type supports aliased
/// mutation.
#[inline]
pub fn from_mut(elem: &mut T) -> Self {
Self::new(elem.into(), BitIdx::ZERO)
}
/// Attempts to construct a `BitPtr` from an element location.
///
/// # Parameters
///
/// - `elem`: A write-capable element address.
///
/// # Returns
///
/// A write-capable bit-pointer to the zeroth bit in the `*elem` location,
/// if `elem` is well-formed.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn from_mut_ptr(elem: *mut T) -> Result<Self, BitPtrError<T>> {
Self::try_new(elem, 0)
}
/// Constructs a `BitPtr` from a slice reference.
///
/// This differs from [`from_mut`] in that the returned pointer keeps its
/// provenance over the entire slice, whereas producing a pointer to the
/// base bit of a slice with `BitPtr::from_mut(&mut slice[0])` narrows its
/// provenance to only the `slice[0]` element, and calling [`add`] to leave
/// that element, even remaining in the slice, may cause UB.
///
/// # Parameters
///
/// - `slice`: A mutabily borrowed slice of memory.
///
/// # Returns
///
/// A write-capable bit-pointer to the zeroth bit in the base location of
/// the slice.
///
/// This pointer has provenance over the entire `slice`, and may safely use
/// [`add`] to traverse memory elements as long as it stays within the
/// slice.
///
/// [`add`]: Self::add
/// [`from_mut`]: Self::from_mut
#[inline]
pub fn from_mut_slice(slice: &mut [T]) -> Self {
Self::new(
unsafe { Address::new_unchecked(slice.as_mut_ptr() as usize) },
BitIdx::ZERO,
)
}
/// Gets the pointer to the base memory location containing the referent
/// bit.
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn pointer(&self) -> *mut T {
self.get_addr().to_mut()
}
// `pointer` fundamental inherent API
/// Produces a proxy mutable reference to the referent bit.
///
/// Because `BitPtr` is a non-null, well-aligned, pointer, this never
/// returns `None`.
///
/// # Original
///
/// [`pointer::as_mut`](https://doc.rust-lang.org/std/primitive.pointer.html#method.as_mut)
///
/// # API Differences
///
/// This produces a proxy type rather than a true reference. The proxy
/// implements `DerefMut<Target = bool>`, and can be converted to `&mut
/// bool` with `&mut *`. Writes to the proxy are not reflected in the
/// proxied location until the proxy is destroyed, either through `Drop` or
/// with its [`set`] method.
///
/// The proxy must be bound as `mut` in order to write through the binding.
///
/// # Safety
///
/// Since `BitPtr` does not permit null or misaligned pointers, this method
/// will always dereference the pointer and you must ensure the following
/// conditions are met:
///
/// - the pointer must be dereferencable as defined in the standard library
/// documentation
/// - the pointer must point to an initialized instance of `T`
/// - you must ensure that no other pointer will race to modify the referent
/// location while this call is reading from memory to produce the proxy
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = 0u8;
/// let ptr = BitPtr::<_, Lsb0, _>::from_mut(&mut data);
/// let mut val = unsafe { ptr.as_mut() }.unwrap();
/// assert!(!*val);
/// *val = true;
/// assert!(*val);
/// ```
///
/// [`set`]: crate::ptr::BitRef::set
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn as_mut<'a>(self) -> Option<BitRef<'a, Mut, O, T>> {
Some(BitRef::from_bitptr(self))
}
/// Copies `count` bits from `src` to `self`. The source and destination may
/// overlap.
///
/// Note: this has the *opposite* argument order of [`ptr::copy`].
///
/// # Original
///
/// [`pointer::copy_from`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_from)
///
/// # Safety
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_from<O2, T2>(
self,
src: BitPtr<Const, O2, T2>,
count: usize,
) where
O2: BitOrder,
T2: BitStore,
{
src.copy_to(self, count);
}
/// Copies `count` bits from `src` to `self`. The source and destination may
/// *not* overlap.
///
/// NOTE: this has the *opposite* argument order of
/// [`ptr::copy_nonoverlapping`].
///
/// # Original
///
/// [`pointer::copy_from_nonoverlapping`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_from_nonoverlapping)
///
/// # Safety
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_from_nonoverlapping<O2, T2>(
self,
src: BitPtr<Const, O2, T2>,
count: usize,
) where
O2: BitOrder,
T2: BitStore,
{
src.copy_to_nonoverlapping(self, count);
}
/// Overwrites a memory location with the given bit.
///
/// See [`ptr::write`] for safety concerns and examples.
///
/// # Original
///
/// [`pointer::write`](https://doc.rust-lang.org/std/primitive.pointer.html#method.write)
///
/// [`ptr::write`]: crate::ptr::write
#[inline]
#[allow(clippy::clippy::missing_safety_doc)]
pub unsafe fn write(self, value: bool) {
(&*self.addr.to_access()).write_bit::<O>(self.head, value);
}
/// Performs a volatile write of a memory location with the given bit.
///
/// Because processors do not have single-bit write instructions, this must
/// perform a volatile read of the location, perform the bit modification
/// within the processor register, and then perform a volatile write back to
/// memory. These three steps are guaranteed to be sequential, but are not
/// guaranteed to be atomic.
///
/// Volatile operations are intended to act on I/O memory, and are
/// guaranteed to not be elided or reördered by the compiler across other
/// volatile operations.
///
/// # Original
///
/// [`pointer::write_volatile`](https://doc.rust-lang.org/std/primitive.pointer.html#method.write_volatile)
///
/// # Safety
///
/// See [`ptr::write_volatile`] for safety concerns and examples.
///
/// [`ptr::write_volatile`]: crate::ptr::write_volatile
#[inline]
pub unsafe fn write_volatile(self, val: bool) {
let select = O::select(self.head).value();
let mut tmp = self.addr.to_mem().read_volatile();
if val {
tmp |= &select;
}
else {
tmp &= &!select;
}
self.addr.to_mem_mut().write_volatile(tmp);
}
/// Replaces the bit at `*self` with `src`, returning the old bit.
///
/// # Original
///
/// [`pointer::replace`](https://doc.rust-lang.org/std/primitive.pointer.html#method.replace)
///
/// # Safety
///
/// See [`ptr::replace`] for safety concerns and examples.
///
/// [`ptr::replace`]: crate::ptr::replace
#[inline]
pub unsafe fn replace(self, src: bool) -> bool {
let out = self.read();
self.write(src);
out
}
/// Swaps the bits at two mutable locations. They may overlap.
///
/// # Original
///
/// [`pointer::swap`](https://doc.rust-lang.org/std/primitive.pointer.html#method.swap)
///
/// # Safety
///
/// See [`ptr::swap`] for safety concerns and examples.
///
/// [`ptr::swap`]: crate::ptr::swap
#[inline]
pub unsafe fn swap<O2, T2>(self, with: BitPtr<Mut, O2, T2>)
where
O2: BitOrder,
T2: BitStore,
{
let (a, b) = (self.read(), with.read());
self.write(b);
with.write(a);
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Clone for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline(always)]
fn clone(&self) -> Self {
Self {
addr: self.get_addr(),
..*self
}
}
}
impl<M, O, T> Eq for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Ord for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline]
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.partial_cmp(other).expect(
"BitPtr has a total ordering when type parameters are identical",
)
}
}
#[cfg(not(tarpaulin_include))]
impl<M1, M2, O, T1, T2> PartialEq<BitPtr<M2, O, T2>> for BitPtr<M1, O, T1>
where
M1: Mutability,
M2: Mutability,
O: BitOrder,
T1: BitStore,
T2: BitStore,
{
#[inline]
fn eq(&self, other: &BitPtr<M2, O, T2>) -> bool {
if TypeId::of::<T1::Mem>() != TypeId::of::<T2::Mem>() {
return false;
}
self.get_addr().value() == other.get_addr().value()
&& self.head.value() == other.head.value()
}
}
#[cfg(not(tarpaulin_include))]
impl<M1, M2, O, T1, T2> PartialOrd<BitPtr<M2, O, T2>> for BitPtr<M1, O, T1>
where
M1: Mutability,
M2: Mutability,
O: BitOrder,
T1: BitStore,
T2: BitStore,
{
#[inline]
fn partial_cmp(&self, other: &BitPtr<M2, O, T2>) -> Option<cmp::Ordering> {
if TypeId::of::<T1::Mem>() != TypeId::of::<T2::Mem>() {
return None;
}
match (self.get_addr().value()).cmp(&other.get_addr().value()) {
cmp::Ordering::Equal => {
self.head.value().partial_cmp(&other.head.value())
},
ord => Some(ord),
}
}
}
#[cfg(not(tarpaulin_include))]
impl<O, T> From<&T> for BitPtr<Const, O, T>
where
O: BitOrder,
T: BitStore,
{
#[inline]
fn from(elem: &T) -> Self {
Self::new(elem.into(), BitIdx::ZERO)
}
}
#[cfg(not(tarpaulin_include))]
impl<O, T> From<&mut T> for BitPtr<Mut, O, T>
where
O: BitOrder,
T: BitStore,
{
#[inline]
fn from(elem: &mut T) -> Self {
Self::new(elem.into(), BitIdx::ZERO)
}
}
#[cfg(not(tarpaulin_include))]
impl<O, T> TryFrom<*const T> for BitPtr<Const, O, T>
where
O: BitOrder,
T: BitStore,
{
type Error = BitPtrError<T>;
#[inline(always)]
fn try_from(elem: *const T) -> Result<Self, Self::Error> {
Self::try_new(elem, 0)
}
}
#[cfg(not(tarpaulin_include))]
impl<O, T> TryFrom<*mut T> for BitPtr<Mut, O, T>
where
O: BitOrder,
T: BitStore,
{
type Error = BitPtrError<T>;
#[inline(always)]
fn try_from(elem: *mut T) -> Result<Self, Self::Error> {
Self::try_new(elem, 0)
}
}
impl<M, O, T> Debug for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(
fmt,
"*{} Bit<{}, {}>",
match TypeId::of::<M>() {
t if t == TypeId::of::<Const>() => "const",
t if t == TypeId::of::<Mut>() => "mut",
_ => unreachable!("No other implementors exist"),
},
type_name::<O>(),
type_name::<T>()
)?;
Pointer::fmt(self, fmt)
}
}
impl<M, O, T> Pointer for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
fmt.debug_tuple("")
.field(&self.get_addr().fmt_pointer())
.field(&self.head.fmt_binary())
.finish()
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Hash for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline]
fn hash<H>(&self, state: &mut H)
where H: Hasher {
self.get_addr().hash(state);
self.head.hash(state);
}
}
impl<M, O, T> Copy for BitPtr<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
}
/// Errors produced by invalid bit-pointer components.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum BitPtrError<T>
where T: BitStore
{
/// The element address was somehow invalid.
InvalidAddress(AddressError<T>),
/// The bit index was somehow invalid.
InvalidIndex(BitIdxError<T::Mem>),
}
#[cfg(not(tarpaulin_include))]
impl<T> From<AddressError<T>> for BitPtrError<T>
where T: BitStore
{
#[inline(always)]
fn from(err: AddressError<T>) -> Self {
Self::InvalidAddress(err)
}
}
#[cfg(not(tarpaulin_include))]
impl<T> From<BitIdxError<T::Mem>> for BitPtrError<T>
where T: BitStore
{
#[inline(always)]
fn from(err: BitIdxError<T::Mem>) -> Self {
Self::InvalidIndex(err)
}
}
#[cfg(not(tarpaulin_include))]
impl<T> From<Infallible> for BitPtrError<T>
where T: BitStore
{
#[inline(always)]
fn from(_: Infallible) -> Self {
unreachable!("Infallible errors can never be produced");
}
}
#[cfg(not(tarpaulin_include))]
impl<T> Display for BitPtrError<T>
where T: BitStore
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
match self {
Self::InvalidAddress(addr) => Display::fmt(addr, fmt),
Self::InvalidIndex(index) => Display::fmt(index, fmt),
}
}
}
unsafe impl<T> Send for BitPtrError<T> where T: BitStore
{
}
unsafe impl<T> Sync for BitPtrError<T> where T: BitStore
{
}
#[cfg(feature = "std")]
impl<T> std::error::Error for BitPtrError<T> where T: BitStore
{
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
mutability::Const,
prelude::Lsb0,
};
#[test]
fn ctor() {
let data = 0u16;
let head = 5;
let bitptr = BitPtr::<Const, Lsb0, _>::try_new(&data, head).unwrap();
let (addr, indx) = bitptr.raw_parts();
assert_eq!(addr.to_const(), &data as *const _);
assert_eq!(indx.value(), head);
}
#[test]
fn bitref() {
let data = 1u32 << 23;
let head = 23;
let bitptr = BitPtr::<Const, Lsb0, _>::try_new(&data, head).unwrap();
let bitref = unsafe { bitptr.as_ref() }.unwrap();
assert!(*bitref);
}
#[test]
fn assert_size() {
assert!(
core::mem::size_of::<BitPtr<Const, Lsb0, u8>>()
<= core::mem::size_of::<usize>() + core::mem::size_of::<u8>(),
);
}
#[test]
#[cfg(feature = "alloc")]
fn format() {
use crate::order::Msb0;
#[cfg(not(feature = "std"))]
use alloc::format;
let base = 0u16;
let bitptr = BitPtr::<_, Msb0, _>::from_ref(&base);
let text = format!("{:?}", unsafe { bitptr.add(3) });
let render = format!(
"*const Bit<bitvec::order::Msb0, u16>({:p}, {:04b})",
&base as *const u16, 3
);
assert_eq!(text, render);
}
}