1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>

//! ### Implementation of a Verifiable Random Function (VRF) using Ristretto points and Schnorr DLEQ proofs.
//!
//! *Warning*  We warn that our VRF construction supports malleable
//! outputs via the `*malleable*` methods.  These are insecure when
//! used in  conjunction with our HDKD provided in dervie.rs.
//! Attackers could translate malleable VRF outputs from one soft subkey 
//! to another soft subkey, gaining early knowledge of the VRF output.
//! We suggest using either non-malleable VRFs or using implicit
//! certificates instead of HDKD when using VRFs.
//!
//! We model the VRF on "Making NSEC5 Practical for DNSSEC" by
//! Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor,
//! Jan Včelák, Leonid Rezyin, andd Sharon Goldberg.
//! https://eprint.iacr.org/2017/099.pdf
//! We note the V(X)EdDSA signature scheme by Trevor Perrin at
//! https://www.signal.org/docs/specifications/xeddsa/#vxeddsa
//! is almost identical to the NSEC5 construction, except that
//! V(X)Ed25519 fails to be a VRF by giving signers multiple
//! outputs per input.  There is another even later variant at
//! https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
//!
//! We support individual signers merging numerous VRF outputs created
//! with the same keypair, which follows the "DLEQ Proofs" and "Batching
//! the Proofs" sections of "Privacy Pass - The Math" by Alex Davidson,
//! https://new.blog.cloudflare.com/privacy-pass-the-math/#dleqproofs
//! and "Privacy Pass: Bypassing Internet Challenges Anonymously"
//! by Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley,
//! and Filippo Valsorda.
//! https://www.petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
//!
//! As noted there, our merging technique's soundness appeals to
//! Theorem 3.17 on page 74 of Ryan Henry's PhD thesis
//! "Efficient Zero-Knowledge Proofs and Applications"
//! https://uwspace.uwaterloo.ca/bitstream/handle/10012/8621/Henry_Ryan.pdf
//! See also the attack on Peng and Bao’s batch proof protocol in
//! "Batch Proofs of Partial Knowledge" by Ryan Henry and Ian Goldberg
//! https://www.cypherpunks.ca/~iang/pubs/batchzkp-acns.pdf
//!
//! We might reasonably ask if the VRF signer's public key should
//! really be hashed when creating the scalars in `vrfs_merge*`.
//! After all, there is no similar requirement when the values being
//! hashed are BLS public keys in say
//! https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
//! In fact, we expect the public key could be dropped both in
//! Privacy Pass' case, due to using randomness in the messages,
//! and in the VRF case, provided the message depends upon shared
//! randomness created after the public key.  Yet, there are VRF
//! applications outside these two cases, and DLEQ proof applications
//! where the points are not even hashes.  At minimum, we expect
//! hashing the public key prevents malicious signers from choosing
//! their key to cancel out the blinding of a particular point,
//! which might become important in a some anonymity applications.
//! In any case, there is no cost to hashing the public key for VRF
//! applications, but important such an approach cannot yield a
//! verifiable shuffle.
//! TODO: Explain better!
//!
//! We also implement verifier side batching analogous to batched
//! verification of Schnorr signatures, but note this requires an
//! extra curve point, which enlarges the VRF proofs from 64 bytes
//! to 96 bytes.  We provide `shorten_*` methods to produce the
//! non-batchable proof from the batchable proof because doing so
//! is an inherent part of the batch verification anyways.
//! TODO: Security arguments!
//!
//! We do not provide DLEQ proofs optimized for the same signer using
//! multiple public keys because such constructions sound more the
//! domain of zero-knowledge proof libraries.

use core::borrow::Borrow;

#[cfg(any(feature = "alloc", feature = "std"))]
use core::iter::once;

#[cfg(feature = "alloc")]
use alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "std")]
use std::{boxed::Box, vec::Vec};

use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto, RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::{IsIdentity,MultiscalarMul,VartimeMultiscalarMul}; // Identity

use merlin::Transcript;

use super::*;
use crate::context::SigningTranscript;
use crate::points::RistrettoBoth;
// use crate::errors::SignatureError;

/// Value for `kusama` paramater to `*dleq*` methods that yields the VRF for kusama.
/// 
/// Greg Maxwell argue that nonce generation should hash all parameters
/// that challenge generation does in https://moderncrypto.org/mail-archive/curves/2020/001012.html
/// We support this position in prionciple as a defense in depth against
/// attacks that cause missalignment between the public and secret keys.
///
/// We did this for signatures but not for the VRF deployed in Kusama.
/// We cannot justify add this defense to the deployed VRF because
/// several layers already address this attack, including merlin's
/// witnesses and that signers normally only sign VRF outputs once.
/// 
/// We suggest using Greg Maxwell's trick if you use a stand alone DLEQ
/// proof though, meaning call `*dleq*` methods with `kusama: false`.
///
/// see: https://github.com/w3f/schnorrkel/issues/53
// We currently lack tests for the case when this is false, but you can
// rerun cargo test with this set to false for that.
pub const KUSAMA_VRF : bool = true;

/// Length of VRF output.
pub const VRF_OUTPUT_LENGTH : usize = 32;

/// Length of the short VRF proof which lacks support for batch verification.
pub const VRF_PROOF_LENGTH : usize = 64;

/// Length of the longer VRF proof which supports batch verification.
pub const VRF_PROOF_BATCHABLE_LENGTH : usize = 96;

/// `SigningTranscript` helper trait that manages VRF output malleability.
///
/// In short, `VRFSigningTranscript` acts like a default argument
/// `malleabe : bool = false` for every mathod that uses it instead of
/// `SigningTranscript`.
pub trait VRFSigningTranscript {
    /// Real underlying `SigningTranscript`
    type T: SigningTranscript;
    /// Return the underlying `SigningTranscript` after addressing
    /// VRF output malleability, usually by making it non-malleable,
    fn transcript_with_malleability_addressed(self, publickey: &PublicKey) -> Self::T;
}

impl<T> VRFSigningTranscript for T where T: SigningTranscript {
    type T = T;
    #[inline(always)]
    fn transcript_with_malleability_addressed(mut self, publickey: &PublicKey) -> T {
        self.commit_point(b"vrf-nm-pk", publickey.as_compressed());        
        // publickey.make_transcript_nonmalleable(&mut self);
        self
    }
}

/// VRF SigningTranscript for malleable VRF ouputs.
///
/// *Warning*  We caution that malleable VRF outputs are insecure when
/// used in conjunction with HDKD, as provided in dervie.rs. 
/// Attackers could translate malleable VRF outputs from one soft subkey 
/// to another soft subkey, gaining early knowledge of the VRF output.
/// We think most VRF applicaitons for which HDKH soudns suitable
/// benefit from using implicit certificates insead of HDKD anyways,
/// which should also be secure in combination with HDKD.
/// We always use non-malleable VRF inputs in our convenience methods.
#[derive(Clone)]
pub struct Malleable<T: SigningTranscript>(pub T);
impl<T> VRFSigningTranscript for Malleable<T> where T: SigningTranscript {
    type T = T;
    #[inline(always)]
    fn transcript_with_malleability_addressed(self, _publickey: &PublicKey) -> T { self.0 }
}


/// Create a malleable VRF input point by hashing a transcript to a point.
///
/// *Warning*  We caution that malleable VRF inputs are insecure when
/// used in conjunction with HDKD, as provided in dervie.rs. 
/// Attackers could translate malleable VRF outputs from one soft subkey 
/// to another soft subkey, gaining early knowledge of the VRF output.
/// We think most VRF applicaitons for which HDKH soudns suitable
/// benefit from using implicit certificates insead of HDKD anyways,
/// which should also be secure in combination with HDKH.
/// We always use non-malleable VRF inputs in our convenience methods.
pub fn vrf_malleable_hash<T: SigningTranscript>(mut t: T) -> RistrettoBoth {
    let mut b = [0u8; 64];
    t.challenge_bytes(b"VRFHash", &mut b);
    RistrettoBoth::from_point(RistrettoPoint::from_uniform_bytes(&b))
}

impl PublicKey {
    /// Create a non-malleable VRF input point by hashing a transcript to a point.
    pub fn vrf_hash<T>(&self, t: T) -> RistrettoBoth
    where T: VRFSigningTranscript {
        vrf_malleable_hash(t.transcript_with_malleability_addressed(self))
    }

    /// Pair a non-malleable VRF output with the hash of the given transcript.
    pub fn vrf_attach_hash<T>(&self, output: VRFOutput, t: T) -> SignatureResult<VRFInOut>
    where T: VRFSigningTranscript {
        output.attach_input_hash(self,t)
    }
}

/// VRF output, possibly unverified.
///
/// Internally, we keep both `RistrettoPoint` and `CompressedRistretto`
/// forms using `RistrettoBoth`.
///
/// We'd actually love to statically distinguish here between inputs
/// and outputs, as well as whether outputs were verified, but doing
/// so would disrupt our general purpose DLEQ proof mechanism, so
/// users must be responcible for this themselves.  We do however
/// consume by value in actual output methods, and do not implement
/// `Copy`, as a reminder that VRF outputs should only be used once
/// and should be checked before usage.
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VRFOutput(pub [u8; PUBLIC_KEY_LENGTH]);

impl VRFOutput {
    const DESCRIPTION: &'static str =
        "A Ristretto Schnorr VRF output represented as a 32-byte Ristretto compressed point";

    /// Convert this VRF output to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; VRF_OUTPUT_LENGTH] {
        self.0
    }

    /// View this secret key as a byte array.
    #[inline]
    pub fn as_bytes(&self) -> &[u8; VRF_OUTPUT_LENGTH] {
        &self.0
    }

    /// Construct a `VRFOutput` from a slice of bytes.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFOutput> {
        if bytes.len() != VRF_OUTPUT_LENGTH {
            return Err(SignatureError::BytesLengthError {
                name: "VRFOutput",
                description: VRFOutput::DESCRIPTION,
                length: VRF_OUTPUT_LENGTH
            });
        }
        let mut bits: [u8; 32] = [0u8; 32];
        bits.copy_from_slice(&bytes[..32]);
        Ok(VRFOutput(bits))
    }

    /// Pair a non-malleable VRF output with the hash of the given transcript.
    pub fn attach_input_hash<T>(&self, public: &PublicKey, t: T) -> SignatureResult<VRFInOut>
    where T: VRFSigningTranscript {
        let input = public.vrf_hash(t);
        let output = RistrettoBoth::from_bytes_ser("VRFOutput", VRFOutput::DESCRIPTION, &self.0) ?;
        if output.as_point().is_identity() { return Err(SignatureError::PointDecompressionError); }
        Ok(VRFInOut { input, output })
    }
}

serde_boilerplate!(VRFOutput);

/// VRF input and output paired together, possibly unverified.
///
/// Internally, we keep both `RistrettoPoint` and `CompressedRistretto`
/// forms using `RistrettoBoth`.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VRFInOut {
    /// VRF input point
    pub input: RistrettoBoth,
    /// VRF output point
    pub output: RistrettoBoth,
}

impl SecretKey {
    /// Evaluate the VRF-like multiplication on an uncompressed point,
    /// probably not useful in this form.
    pub fn vrf_create_from_point(&self, input: RistrettoBoth) -> VRFInOut {
        let output = RistrettoBoth::from_point(&self.key * input.as_point());
        VRFInOut { input, output }
    }

    /// Evaluate the VRF-like multiplication on a compressed point,
    /// useful for proving key exchanges, OPRFs, or sequential VRFs.
    ///
    /// We caution that such protocols could provide signing oracles
    /// and note that `vrf_create_from_point` cannot check for
    /// problematic inputs like `attach_input_hash` does.
    pub fn vrf_create_from_compressed_point(&self, input: &VRFOutput) -> SignatureResult<VRFInOut> {
        let input = RistrettoBoth::from_compressed(CompressedRistretto(input.0)) ?;
        Ok(self.vrf_create_from_point(input))
    }
}

impl Keypair {
    /// Evaluate the VRF on the given transcript.
    pub fn vrf_create_hash<T: VRFSigningTranscript>(&self, t: T) -> VRFInOut {
        self.secret.vrf_create_from_point(self.public.vrf_hash(t))
    }
}

impl VRFInOut {
    /// VRF output point bytes for serialization.
    pub fn as_output_bytes(&self) -> &[u8; 32] {
        self.output.as_compressed().as_bytes()
    }

    /// VRF output point bytes for serialization.
    pub fn to_output(&self) -> VRFOutput {
        VRFOutput(self.output.as_compressed().to_bytes())
    }

    /// Commit VRF input and output to a transcript.
    ///
    /// We commit both the input and output to provide the 2Hash-DH
    /// construction from Theorem 2 on page 32 in appendix C of
    /// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
    /// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
    ///
    /// We use this construction both for the VRF usage methods
    /// `VRFInOut::make_*` as well as for signer side batching.
    pub fn commit<T: SigningTranscript>(&self, t: &mut T) {
        t.commit_point(b"vrf-in", self.input.as_compressed());
        t.commit_point(b"vrf-out", self.output.as_compressed());
    }

    /// Raw bytes output from the VRF.
    ///
    /// If you are not the signer then you must verify the VRF before calling this method.
    ///
    /// If called with distinct contexts then outputs should be independent.
    ///
    /// We incorporate both the input and output to provide the 2Hash-DH
    /// construction from Theorem 2 on page 32 in appendex C of
    /// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
    /// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
    pub fn make_bytes<B: Default + AsMut<[u8]>>(&self, context: &[u8]) -> B {
        let mut t = Transcript::new(b"VRFResult");
        t.append_message(b"",context);
        self.commit(&mut t);
        let mut seed = B::default();
        t.challenge_bytes(b"", seed.as_mut());
        seed
    }

    /// VRF output converted into any `SeedableRng`.
    ///
    /// If you are not the signer then you must verify the VRF before calling this method.
    ///
    /// We expect most users would prefer the less generic `VRFInOut::make_chacharng` method.
    pub fn make_rng<R: ::rand_core::SeedableRng>(&self, context: &[u8]) -> R {
        R::from_seed(self.make_bytes::<R::Seed>(context))
    }

    /// VRF output converted into a `ChaChaRng`.
    ///
    /// If you are not the signer then you must verify the VRF before calling this method.
    ///
    /// If called with distinct contexts then outputs should be independent.
    /// Independent output streams are available via `ChaChaRng::set_stream` too.
    ///
    /// We incorporate both the input and output to provide the 2Hash-DH
    /// construction from Theorem 2 on page 32 in appendex C of
    /// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
    /// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
    #[cfg(feature = "rand_chacha")]
    pub fn make_chacharng(&self, context: &[u8]) -> ::rand_chacha::ChaChaRng {
        self.make_rng::<::rand_chacha::ChaChaRng>(context)
    }

    /// VRF output converted into Merlin's Keccek based `Rng`.
    ///
    /// If you are not the signer then you must verify the VRF before calling this method.
    ///
    /// We think this might be marginally slower than `ChaChaRng`
    /// when considerable output is required, but it should reduce
    /// the final linked binary size slightly, and improves domain
    /// separation.
    #[inline(always)]
    pub fn make_merlin_rng(&self, context: &[u8]) -> merlin::TranscriptRng {
        // Very insecure hack except for our commit_witness_bytes below
        struct ZeroFakeRng;
        impl ::rand_core::RngCore for ZeroFakeRng {
            fn next_u32(&mut self) -> u32 {  panic!()  }
            fn next_u64(&mut self) -> u64 {  panic!()  }
            fn fill_bytes(&mut self, dest: &mut [u8]) {
                for i in dest.iter_mut() {  *i = 0;  }
            }
            fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), ::rand_core::Error> {
                self.fill_bytes(dest);
                Ok(())
            }
        }
        impl ::rand_core::CryptoRng for ZeroFakeRng {}

        let mut t = Transcript::new(b"VRFResult");
        t.append_message(b"",context);
        self.commit(&mut t);
        t.build_rng().finalize(&mut ZeroFakeRng)
    }
}

fn challenge_scalar_128<T: SigningTranscript>(mut t: T) -> Scalar {
    let mut s = [0u8; 16];
    t.challenge_bytes(b"", &mut s);
    Scalar::from(u128::from_le_bytes(s))
}

impl PublicKey {
    /// Merge VRF input and output pairs from the same signer,
    /// using variable time arithmetic
    ///
    /// You should use `vartime=true` when verifying VRF proofs batched
    /// by the singer.  You could usually use `vartime=true` even when
    /// producing proofs, provided the set being signed is not secret.
    ///
    /// There is sadly no constant time 128 bit multiplication in dalek,
    /// making `vartime=false` somewhat slower than necessary.  It should
    /// only impact signers in niche scenarios however, so the slower
    /// variant should normally be unnecessary.
    ///
    /// Panics if given an empty points list.
    ///
    /// TODO: Add constant time 128 bit batched multiplication to dalek.
    /// TODO: Is rand_chacha's `gen::<u128>()` standardizable enough to
    /// prefer it over merlin for the output?  
    pub fn vrfs_merge<B>(&self, ps: &[B], vartime: bool) -> VRFInOut
    where
        B: Borrow<VRFInOut>,
    {
        assert!( ps.len() > 0);
        let mut t = ::merlin::Transcript::new(b"MergeVRFs");
        t.commit_point(b"vrf:pk", self.as_compressed());
        for p in ps.iter() {
            p.borrow().commit(&mut t);
        }

        let zf = || ps.iter().map(|p| {
            let mut t0 = t.clone();
            p.borrow().commit(&mut t0);
            challenge_scalar_128(t0)
        });
        #[cfg(any(feature = "alloc", feature = "std"))]
        let zs: Vec<Scalar> = zf().collect();
        #[cfg(any(feature = "alloc", feature = "std"))]
        let zf = || zs.iter();

        // We need actual fns here because closures cannot easily take
        // closures as arguments, due to Rust lacking polymorphic
        // closures but giving all closures unique types.
        fn get_input(p: &VRFInOut) -> &RistrettoPoint { p.input.as_point() }
        fn get_output(p: &VRFInOut) -> &RistrettoPoint { p.output.as_point() }
        #[cfg(any(feature = "alloc", feature = "std"))]
        let go = |io: fn(p: &VRFInOut) -> &RistrettoPoint| {
            let ps = ps.iter().map( |p| io(p.borrow()) );
            RistrettoBoth::from_point(if vartime {
                RistrettoPoint::vartime_multiscalar_mul(zf(), ps)
            } else {
                RistrettoPoint::multiscalar_mul(zf(), ps)
            })
        };
        #[cfg(not(any(feature = "alloc", feature = "std")))]
        let go = |io: fn(p: &VRFInOut) -> &RistrettoPoint| {
            use curve25519_dalek::traits::Identity;
            let mut acc = RistrettoPoint::identity();
            for (z,p) in zf().zip(ps) {
                acc += z * io(p.borrow());
            }
            RistrettoBoth::from_point(acc)
        };

        let input = go( get_input );
        let output = go( get_output );
        VRFInOut { input, output }
    }
}

/// Short proof of correctness for associated VRF output,
/// for which no batched verification works.
#[derive(Debug, Clone, PartialEq, Eq)] // PartialOrd, Ord, Hash
pub struct VRFProof {
    /// Challenge
    c: Scalar,
    /// Schnorr proof
    s: Scalar,
}

impl VRFProof {
    const DESCRIPTION : &'static str = "A Ristretto Schnorr VRF proof without batch verification support, which consists of two scalars, making it 64 bytes.";

    /// Convert this `VRFProof` to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; VRF_PROOF_LENGTH] {
        let mut bytes = [0u8; VRF_PROOF_LENGTH];

        bytes[..32].copy_from_slice(&self.c.as_bytes()[..]);
        bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
        bytes
    }

    /// Construct a `VRFProof` from a slice of bytes.
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFProof> {
        if bytes.len() != VRF_PROOF_LENGTH {
            return Err(SignatureError::BytesLengthError {
                name: "VRFProof",
                description: VRFProof::DESCRIPTION,
                length: VRF_PROOF_LENGTH
            });
        }
        let mut c: [u8; 32] = [0u8; 32];
        let mut s: [u8; 32] = [0u8; 32];

        c.copy_from_slice(&bytes[..32]);
        s.copy_from_slice(&bytes[32..]);

        let c = Scalar::from_canonical_bytes(c).ok_or(SignatureError::ScalarFormatError) ?;
        let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
        Ok(VRFProof { c, s })
    }
}

serde_boilerplate!(VRFProof);

/// Longer proof of correctness for associated VRF output,
/// which supports batching.
#[derive(Debug, Clone, PartialEq, Eq)] // PartialOrd, Ord, Hash
#[allow(non_snake_case)]
pub struct VRFProofBatchable {
    /// Our nonce R = r G to permit batching the first verification equation
    R: CompressedRistretto,
    /// Our input hashed and raised to r to permit batching the second verification equation
    Hr: CompressedRistretto,
    /// Schnorr proof
    s: Scalar,
}

impl VRFProofBatchable {
    const DESCRIPTION : &'static str = "A Ristretto Schnorr VRF proof that supports batch verification, which consists of two Ristretto compressed points and one scalar, making it 96 bytes.";

    /// Convert this `VRFProofBatchable` to a byte array.
    #[allow(non_snake_case)]
    #[inline]
    pub fn to_bytes(&self) -> [u8; VRF_PROOF_BATCHABLE_LENGTH] {
        let mut bytes = [0u8; VRF_PROOF_BATCHABLE_LENGTH];

        bytes[0..32].copy_from_slice(&self.R.as_bytes()[..]);
        bytes[32..64].copy_from_slice(&self.Hr.as_bytes()[..]);
        bytes[64..96].copy_from_slice(&self.s.as_bytes()[..]);
        bytes
    }

    /// Construct a `VRFProofBatchable` from a slice of bytes.
    #[allow(non_snake_case)]
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> SignatureResult<VRFProofBatchable> {
        if bytes.len() != VRF_PROOF_BATCHABLE_LENGTH {
            return Err(SignatureError::BytesLengthError {
                name: "VRFProofBatchable",
                description: VRFProofBatchable::DESCRIPTION,
                length: VRF_PROOF_BATCHABLE_LENGTH,
            });
        }
        let mut R: [u8; 32] = [0u8; 32];
        let mut Hr: [u8; 32] = [0u8; 32];
        let mut s: [u8; 32] = [0u8; 32];

        R.copy_from_slice(&bytes[0..32]);
        Hr.copy_from_slice(&bytes[32..64]);
        s.copy_from_slice(&bytes[64..96]);

        let s = Scalar::from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
        Ok(VRFProofBatchable { R: CompressedRistretto(R), Hr: CompressedRistretto(Hr), s })
    }

    /// Return the shortened `VRFProof` for retransmitting in not batched situations
    #[allow(non_snake_case)]
    pub fn shorten_dleq<T>(&self, mut t: T, public: &PublicKey, p: &VRFInOut, kusama: bool) -> VRFProof
    where T: SigningTranscript,
    {
        t.proto_name(b"DLEQProof");
        // t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
        t.commit_point(b"vrf:h", p.input.as_compressed());
        if !kusama {  t.commit_point(b"vrf:pk", public.as_compressed());  }

        t.commit_point(b"vrf:R=g^r", &self.R);
        t.commit_point(b"vrf:h^r", &self.Hr);

        if kusama {  t.commit_point(b"vrf:pk", public.as_compressed());  }
        t.commit_point(b"vrf:h^sk", p.output.as_compressed());

        VRFProof {
            c: t.challenge_scalar(b"prove"), // context, message, A/public_key, R=rG
            s: self.s,
        }
    }

    /// Return the shortened `VRFProof` for retransmitting in non-batched situations
    ///
    /// TODO: Avoid the error path here by avoiding decompressing,
    /// either locally here, or more likely by decompressing
    /// `VRFOutput` in deserialization.
    pub fn shorten_vrf<T>( &self, public: &PublicKey, t: T, out: &VRFOutput)
     -> SignatureResult<VRFProof>
    where T: VRFSigningTranscript,
    {
        let p = out.attach_input_hash(public,t) ?; // Avoidable errors if decompressed earlier
        let t0 = Transcript::new(b"VRF");  // We have context in t and another hear confuses batching
        Ok(self.shorten_dleq(t0, public, &p, KUSAMA_VRF))
    }
}

serde_boilerplate!(VRFProofBatchable);

impl Keypair {
    /// Produce DLEQ proof.
    ///
    /// We assume the `VRFInOut` paramater has been computed correctly
    /// by multiplying every input point by `self.secret`, like by
    /// using one of the `vrf_create_*` methods on `SecretKey`.
    /// If so, we produce a proof that this multiplication was done correctly.
    #[allow(non_snake_case)]
    pub fn dleq_proove<T>(&self, mut t: T, p: &VRFInOut, kusama: bool) -> (VRFProof, VRFProofBatchable)
    where
        T: SigningTranscript,
    {
        t.proto_name(b"DLEQProof");
        // t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
        t.commit_point(b"vrf:h", p.input.as_compressed());
        if !kusama {  t.commit_point(b"vrf:pk", self.public.as_compressed());  }

        // We compute R after adding pk and all h.
        let mut r = t.witness_scalar(b"proving\00",&[&self.secret.nonce]);
        let R = (&r * &constants::RISTRETTO_BASEPOINT_TABLE).compress();
        t.commit_point(b"vrf:R=g^r", &R);

        let Hr = (&r * p.input.as_point()).compress();
        t.commit_point(b"vrf:h^r", &Hr);

        if kusama {  t.commit_point(b"vrf:pk", self.public.as_compressed());  }
        // We add h^sk last to save an allocation if we ever need to hash multiple h together.
        t.commit_point(b"vrf:h^sk", p.output.as_compressed());

        let c = t.challenge_scalar(b"prove"); // context, message, A/public_key, R=rG
        let s = &r - &(&c * &self.secret.key);

        ::zeroize::Zeroize::zeroize(&mut r);

        (VRFProof { c, s }, VRFProofBatchable { R, Hr, s })
    }

    /// Run VRF on one single input transcript, producing the outpus
    /// and correspodning short proof.
    ///
    /// There are schemes like Ouroboros Praos in which nodes evaluate
    /// VRFs repeatedly until they win some contest.  In these case,
    /// you should probably use vrf_sign_n_check to gain access to the
    /// `VRFInOut` from `vrf_create_hash` first, and then avoid computing
    /// the proof whenever you do not win. 
    pub fn vrf_sign<T>(&self, t: T) -> (VRFInOut, VRFProof, VRFProofBatchable)
    where T: VRFSigningTranscript,
    {
        self.vrf_sign_extra(t,Transcript::new(b"VRF"))
        // We have context in t and another hear confuses batching
    }

    /// Run VRF on one single input transcript and an extra message transcript, 
    /// producing the outpus and correspodning short proof.
    pub fn vrf_sign_extra<T,E>(&self, t: T, extra: E) -> (VRFInOut, VRFProof, VRFProofBatchable)
    where T: VRFSigningTranscript,
          E: SigningTranscript,
    {
        let p = self.vrf_create_hash(t);
        let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
        (p, proof, proof_batchable)
    }


    /// Run VRF on one single input transcript, producing the outpus
    /// and correspodning short proof only if the result first passes
    /// some check.
    ///
    /// There are schemes like Ouroboros Praos in which nodes evaluate
    /// VRFs repeatedly until they win some contest.  In these case,
    /// you might use this function to short circuit computing the full
    /// proof.
    pub fn vrf_sign_after_check<T,F>(&self, t: T, mut check: F)
     -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
    where T: VRFSigningTranscript,
          F: FnMut(&VRFInOut) -> bool,
    {
        self.vrf_sign_extra_after_check(t,
            |io| if check(io) { Some(Transcript::new(b"VRF")) } else { None }
        )
    }

    /// Run VRF on one single input transcript, producing the outpus
    /// and correspodning short proof only if the result first passes
    /// some check, which itself returns an extra message transcript.
    pub fn vrf_sign_extra_after_check<T,E,F>(&self, t: T, mut check: F)
     -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
    where T: VRFSigningTranscript,
          E: SigningTranscript,
          F: FnMut(&VRFInOut) -> Option<E>,
    {
        let p = self.vrf_create_hash(t);
        let extra = check(&p) ?;
        let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
        Some((p, proof, proof_batchable))
    }

    /// Run VRF on several input transcripts, producing their outputs
    /// and a common short proof.
    ///
    /// We merge the VRF outputs using variable time arithmetic, so
    /// if even the hash of the message being signed is sensitive then
    /// you might reimplement some constant time variant.
    #[cfg(any(feature = "alloc", feature = "std"))]
    pub fn vrfs_sign<T, I>(&self, ts: I) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)
    where
        T: VRFSigningTranscript,
        I: IntoIterator<Item = T>,
    {
        self.vrfs_sign_extra(ts, Transcript::new(b"VRF"))
    }

    /// Run VRF on several input transcripts and an extra message transcript,
    /// producing their outputs and a common short proof.
    ///
    /// We merge the VRF outputs using variable time arithmetic, so
    /// if even the hash of the message being signed is sensitive then
    /// you might reimplement some constant time variant.
    #[cfg(any(feature = "alloc", feature = "std"))]
    pub fn vrfs_sign_extra<T,E,I>(&self, ts: I, extra: E) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)
    where
        T: VRFSigningTranscript,
        E: SigningTranscript,
        I: IntoIterator<Item = T>,
    {
        let ps = ts.into_iter()
            .map(|t| self.vrf_create_hash(t))
            .collect::<Vec<VRFInOut>>();
        let p = self.public.vrfs_merge(&ps,true);
        let (proof, proof_batchable) = self.dleq_proove(extra, &p, KUSAMA_VRF);
        (ps.into_boxed_slice(), proof, proof_batchable)
    }
}

impl PublicKey {
    /// Verify DLEQ proof that `p.output = s * p.input` where `self`
    /// `s` times the basepoint.
    ///
    /// We return an enlarged `VRFProofBatchable` instead of just true,
    /// so that verifiers can forward batchable proofs.
    ///
    /// In principle, one might provide "blindly verifiable" VRFs that
    /// avoid requiring `self` here, but naively such constructions
    /// risk the same flaws as DLEQ based blind signatures, and this
    /// version exploits the slightly faster basepoint arithmetic.
    #[allow(non_snake_case)]
    pub fn dleq_verify<T>(
        &self,
        mut t: T,
        p: &VRFInOut,
        proof: &VRFProof,
        kusama: bool,
    ) -> SignatureResult<VRFProofBatchable>
    where
        T: SigningTranscript,
    {
        t.proto_name(b"DLEQProof");
        // t.commit_point(b"vrf:g",constants::RISTRETTO_BASEPOINT_TABLE.basepoint().compress());
        t.commit_point(b"vrf:h", p.input.as_compressed());
        if !kusama {  t.commit_point(b"vrf:pk", self.as_compressed());  }

        // We recompute R aka u from the proof
        // let R = (&proof.c * self.as_point()) + (&proof.s * &constants::RISTRETTO_BASEPOINT_TABLE);
        let R = RistrettoPoint::vartime_double_scalar_mul_basepoint(
            &proof.c,
            self.as_point(),
            &proof.s,
        ).compress();
        t.commit_point(b"vrf:R=g^r", &R);

        // We also recompute h^r aka u using the proof
        #[cfg(not(any(feature = "alloc", feature = "std")))]
        let Hr = (&proof.c * p.output.as_point()) + (&proof.s * p.input.as_point());

        // TODO: Verify if this is actually faster using benchmarks
        #[cfg(any(feature = "alloc", feature = "std"))]
        let Hr = RistrettoPoint::vartime_multiscalar_mul(
            &[proof.c, proof.s],
            &[*p.output.as_point(), *p.input.as_point()],
        );

        let Hr = Hr.compress();
        t.commit_point(b"vrf:h^r", &Hr);

        if kusama {  t.commit_point(b"vrf:pk", self.as_compressed());  }
        // We add h^sk last to save an allocation if we ever need to hash multiple h together.
        t.commit_point(b"vrf:h^sk", p.output.as_compressed());

        // We need not check that h^pk lies on the curve because Ristretto ensures this.
        let VRFProof { c, s } = *proof;
        if c == t.challenge_scalar(b"prove") {
            Ok(VRFProofBatchable { R, Hr, s }) // Scalar: Copy ?!?
        } else {
            Err(SignatureError::EquationFalse)
        }
    }

    /// Verify VRF proof for one single input transcript and corresponding output.
    pub fn vrf_verify<T: VRFSigningTranscript>(
        &self,
        t: T,
        out: &VRFOutput,
        proof: &VRFProof,
    ) -> SignatureResult<(VRFInOut, VRFProofBatchable)> {
        self.vrf_verify_extra(t,out,proof,Transcript::new(b"VRF"))
    }

    /// Verify VRF proof for one single input transcript and corresponding output.
    pub fn vrf_verify_extra<T,E>(
        &self,
        t: T,
        out: &VRFOutput,
        proof: &VRFProof,
        extra: E,
    ) -> SignatureResult<(VRFInOut, VRFProofBatchable)> 
    where T: VRFSigningTranscript,
          E: SigningTranscript,
    {
        let p = out.attach_input_hash(self,t)?;
        let proof_batchable = self.dleq_verify(extra, &p, proof, KUSAMA_VRF)?;
        Ok((p, proof_batchable))
    }

    /// Verify a common VRF short proof for several input transcripts and corresponding outputs.
    #[cfg(any(feature = "alloc", feature = "std"))]
    pub fn vrfs_verify<T,I,O>(
        &self,
        transcripts: I,
        outs: &[O],
        proof: &VRFProof,
    ) -> SignatureResult<(Box<[VRFInOut]>, VRFProofBatchable)>
    where
        T: VRFSigningTranscript,
        I: IntoIterator<Item = T>,
        O: Borrow<VRFOutput>,
    {
        self.vrfs_verify_extra(transcripts,outs,proof,Transcript::new(b"VRF"))
    }

    /// Verify a common VRF short proof for several input transcripts and corresponding outputs.
    #[cfg(any(feature = "alloc", feature = "std"))]
    pub fn vrfs_verify_extra<T,E,I,O>(
        &self,
        transcripts: I,
        outs: &[O],
        proof: &VRFProof,
        extra: E,
    ) -> SignatureResult<(Box<[VRFInOut]>, VRFProofBatchable)>
    where
        T: VRFSigningTranscript,
        E: SigningTranscript,
        I: IntoIterator<Item = T>,
        O: Borrow<VRFOutput>,
    {
        let mut ts = transcripts.into_iter();
        let ps = ts.by_ref().zip(outs)
            .map(|(t, out)| out.borrow().attach_input_hash(self,t))
            .collect::<SignatureResult<Vec<VRFInOut>>>()?;
        assert!(ts.next().is_none(), "Too few VRF outputs for VRF inputs.");
        assert!(
            ps.len() == outs.len(),
            "Too few VRF inputs for VRF outputs."
        );
        let p = self.vrfs_merge(&ps[..],true);
        let proof_batchable = self.dleq_verify(extra, &p, proof, KUSAMA_VRF)?;
        Ok((ps.into_boxed_slice(), proof_batchable))
    }
}

/// Batch verify DLEQ proofs where the public keys were held by
/// different parties.
///
/// We first reconstruct the `c`s present in the `VRFProof`s but absent
/// in the `VRFProofBatchable`s, using `shorten_dleq`.  We then verify
/// the `R` and `Hr` components of the `VRFProofBatchable`s using the
/// two equations a normal verification uses to discover them.
/// We do this by delinearizing both verification equations with
/// random numbers.
///
/// TODO: Assess when the two verification equations should be
/// combined, presumably by benchmarking both forms.  At smaller batch
/// sizes then we should clearly benefit form the combined form, but
/// bany combination doubles the scalar by scalar multiplicications
/// and hashing, so large enough batch verifications should favor two
/// seperate calls.
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn dleq_verify_batch(
    ps: &[VRFInOut],
    proofs: &[VRFProofBatchable],
    public_keys: &[PublicKey],
    kusama: bool,
) -> SignatureResult<()> {
    const ASSERT_MESSAGE: &'static str = "The number of messages/transcripts / input points, output points, proofs, and public keys must be equal.";
    assert!(ps.len() == proofs.len(), ASSERT_MESSAGE);
    assert!(proofs.len() == public_keys.len(), ASSERT_MESSAGE);

    // Use a random number generator keyed by the publidc keys, the
    // inout and putput points, and the system randomn number gnerator.
    let mut csprng = {
        let mut t = Transcript::new(b"VB-RNG");
        for (pk,p) in public_keys.iter().zip(ps) {
            t.commit_point(b"",pk.as_compressed());
            p.commit(&mut t);
        }
        t.build_rng().finalize(&mut rand_hack())
    };

    // Select a random 128-bit scalar for each signature.
    // We may represent these as scalars because we use
    // variable time 256 bit multiplication below.
    let rnd_128bit_scalar = |_| {
        let mut r = [0u8; 16];
        csprng.fill_bytes(&mut r);
        Scalar::from(u128::from_le_bytes(r))
    };
    let zz: Vec<Scalar> = proofs.iter().map(rnd_128bit_scalar).collect();

    let z_s: Vec<Scalar> = zz.iter().zip(proofs)
        .map(|(z, proof)| z * proof.s)
        .collect();

    // Compute the basepoint coefficient, ∑ s[i] z[i] (mod l)
    let B_coefficient: Scalar = z_s.iter().sum();

    let t0 = Transcript::new(b"VRF");
    let z_c: Vec<Scalar> = zz.iter().enumerate()
        .map( |(i, z)| z * proofs[i].shorten_dleq(t0.clone(), &public_keys[i], &ps[i], kusama).c )
        .collect();

    // Compute (∑ z[i] s[i] (mod l)) B + ∑ (z[i] c[i] (mod l)) A[i] - ∑ z[i] R[i] = 0
    let mut b = RistrettoPoint::optional_multiscalar_mul(
        zz.iter().map(|z| -z)
            .chain(z_c.iter().cloned())
            .chain(once(B_coefficient)),
        proofs.iter().map(|proof| proof.R.decompress())
            .chain(public_keys.iter().map(|pk| Some(*pk.as_point())))
            .chain(once(Some(constants::RISTRETTO_BASEPOINT_POINT))),
    ).map(|id| id.is_identity()).unwrap_or(false);

    // Compute (∑ z[i] s[i] (mod l)) Input[i] + ∑ (z[i] c[i] (mod l)) Output[i] - ∑ z[i] Hr[i] = 0
    b &= RistrettoPoint::optional_multiscalar_mul(
        zz.iter().map(|z| -z)
            .chain(z_c)
            .chain(z_s),
        proofs.iter().map(|proof| proof.Hr.decompress())
            .chain(ps.iter().map(|p| Some(*p.output.as_point())))
            .chain(ps.iter().map(|p| Some(*p.input.as_point()))),
    ).map(|id| id.is_identity()).unwrap_or(false);

    if b { Ok(()) } else { Err(SignatureError::EquationFalse) }
}

/// Batch verify VRFs by different signers
///
///
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn vrf_verify_batch<T, I>(
    transcripts: I,
    outs: &[VRFOutput],
    proofs: &[VRFProofBatchable],
    publickeys: &[PublicKey],
) -> SignatureResult<Box<[VRFInOut]>>
where
    T: VRFSigningTranscript,
    I: IntoIterator<Item = T>,
{
    let mut ts = transcripts.into_iter();
    let ps = ts.by_ref()
        .zip(publickeys)
        .zip(outs)
        .map(|((t, pk), out)| out.attach_input_hash(pk,t))
        .collect::<SignatureResult<Vec<VRFInOut>>>()?;
    assert!(ts.next().is_none(), "Too few VRF outputs for VRF inputs.");
    assert!(
        ps.len() == outs.len(),
        "Too few VRF inputs for VRF outputs."
    );
    if dleq_verify_batch(&ps[..], proofs, publickeys, KUSAMA_VRF).is_ok() {
        Ok(ps.into_boxed_slice())
    } else {
        Err(SignatureError::EquationFalse)
    }
}

#[cfg(test)]
mod tests {
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;
    #[cfg(feature = "std")]
    use std::vec::Vec;

    use super::*;

    #[test]
    fn vrf_single() {
        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;

        let keypair1 = Keypair::generate_with(&mut csprng);

        let ctx = signing_context(b"yo!");
        let msg = b"meow";
        let (io1, proof1, proof1batchable) = keypair1.vrf_sign(ctx.bytes(msg));
        let out1 = &io1.to_output();
        assert_eq!(
            proof1,
            proof1batchable
                .shorten_vrf(&keypair1.public, ctx.bytes(msg), &out1)
                .unwrap(),
            "Oops `shorten_vrf` failed"
        );
        let (io1too, proof1too) = keypair1.public.vrf_verify(ctx.bytes(msg), &out1, &proof1)
            .expect("Correct VRF verification failed!");
        assert_eq!(
            io1too, io1,
            "Output differs between signing and verification!"
        );
        assert_eq!(
            proof1batchable, proof1too,
            "VRF verification yielded incorrect batchable proof"
        );
        assert_eq!(
            keypair1.vrf_sign(ctx.bytes(msg)).0,
            io1,
            "Rerunning VRF gave different output"
        );

        assert!(
            keypair1.public.vrf_verify(ctx.bytes(b"not meow"), &out1, &proof1).is_err(),
            "VRF verification with incorrect message passed!"
        );

        let keypair2 = Keypair::generate_with(&mut csprng);
        assert!(
            keypair2.public.vrf_verify(ctx.bytes(msg), &out1, &proof1).is_err(),
            "VRF verification with incorrect signer passed!"
        );
    }

    #[test]
    fn vrf_malleable() {
        // #[cfg(feature = "getrandom")]
        let mut csprng = ::rand_core::OsRng;

        let keypair1 = Keypair::generate_with(&mut csprng);

        let ctx = signing_context(b"yo!");
        let msg = b"meow";
        let (io1, proof1, proof1batchable) = keypair1.vrf_sign(Malleable(ctx.bytes(msg)));
        let out1 = &io1.to_output();
        assert_eq!(
            proof1,
            proof1batchable.shorten_vrf(&keypair1.public, Malleable(ctx.bytes(msg)), &out1).unwrap(),
            "Oops `shorten_vrf` failed"
        );
        let (io1too, proof1too) = keypair1
            .public.vrf_verify(Malleable(ctx.bytes(msg)), &out1, &proof1)
            .expect("Correct VRF verification failed!");
        assert_eq!(
            io1too, io1,
            "Output differs between signing and verification!"
        );
        assert_eq!(
            proof1batchable, proof1too,
            "VRF verification yielded incorrect batchable proof"
        );
        assert_eq!(
            keypair1.vrf_sign(Malleable(ctx.bytes(msg))).0,
            io1,
            "Rerunning VRF gave different output"
        );
        assert!(
            keypair1.public.vrf_verify(Malleable(ctx.bytes(b"not meow")), &out1, &proof1).is_err(),
            "VRF verification with incorrect message passed!"
        );

        let keypair2 = Keypair::generate_with(&mut csprng);
        assert!(
            keypair2.public.vrf_verify(Malleable(ctx.bytes(msg)), &out1, &proof1).is_err(),
            "VRF verification with incorrect signer passed!"
        );
        let (io2, _proof2, _proof2batchable) = keypair2.vrf_sign(Malleable(ctx.bytes(msg)));
        let out2 = &io2.to_output();

        // Verified key exchange, aka sequential two party VRF.
        let t0 = Transcript::new(b"VRF");
        let io21 = keypair2.secret.vrf_create_from_compressed_point(out1).unwrap();
        let proofs21 = keypair2.dleq_proove(t0.clone(), &io21, KUSAMA_VRF);
        let io12 = keypair1.secret.vrf_create_from_compressed_point(out2).unwrap();
        let proofs12 = keypair1.dleq_proove(t0.clone(), &io12, KUSAMA_VRF);
        assert_eq!(io12.output, io21.output, "Sequential two-party VRF failed");
        assert_eq!(
            proofs21.0,
            proofs21.1.shorten_dleq(t0.clone(), &keypair2.public, &io21, KUSAMA_VRF),
            "Oops `shorten_dleq` failed"
        );
        assert_eq!(
            proofs12.0,
            proofs12.1.shorten_dleq(t0.clone(), &keypair1.public, &io12, KUSAMA_VRF),
            "Oops `shorten_dleq` failed"
        );
        assert!(keypair1
            .public
            .dleq_verify(t0.clone(), &io12, &proofs12.0, KUSAMA_VRF)
            .is_ok());
        assert!(keypair2
            .public
            .dleq_verify(t0.clone(), &io21, &proofs21.0, KUSAMA_VRF)
            .is_ok());
    }

    #[cfg(any(feature = "alloc", feature = "std"))]
    #[test]
    fn vrfs_merged_and_batched() {
        let mut csprng = ::rand_core::OsRng;
        let keypairs: Vec<Keypair> = (0..4)
            .map(|_| Keypair::generate_with(&mut csprng))
            .collect();

        let ctx = signing_context(b"yo!");
        let messages: [&[u8; 4]; 2] = [b"meow", b"woof"];
        let ts = || messages.iter().map(|m| ctx.bytes(*m));

        let ios_n_proofs = keypairs.iter().map(|k| k.vrfs_sign(ts())).collect::<Vec<(
            Box<[VRFInOut]>,
            VRFProof,
            VRFProofBatchable,
        )>>();

        for (k, (ios, proof, proof_batchable)) in keypairs.iter().zip(&ios_n_proofs) {
            let outs = ios
                .iter()
                .map(|io| io.to_output())
                .collect::<Vec<VRFOutput>>();
            let (ios_too, proof_too) = k
                .public
                .vrfs_verify(ts(), &outs, &proof)
                .expect("Valid VRF output verification failed!");
            assert_eq!(
                ios_too, *ios,
                "Output differs between signing and verification!"
            );
            assert_eq!(
                proof_too, *proof_batchable,
                "Returning batchable proof failed!"
            );
        }
        for (k, (ios, proof, _proof_batchable)) in keypairs.iter().zip(&ios_n_proofs) {
            let outs = ios.iter()
                .rev()
                .map(|io| io.to_output())
                .collect::<Vec<VRFOutput>>();
            assert!(
                k.public.vrfs_verify(ts(), &outs, &proof).is_err(),
                "Incorrect VRF output verification passed!"
            );
        }
        for (k, (ios, proof, _proof_batchable)) in keypairs.iter().rev().zip(&ios_n_proofs) {
            let outs = ios.iter()
                .map(|io| io.to_output())
                .collect::<Vec<VRFOutput>>();
            assert!(
                k.public.vrfs_verify(ts(), &outs, &proof).is_err(),
                "VRF output verification by a different signer passed!"
            );
        }

        let mut ios = keypairs.iter().enumerate()
            .map(|(i, keypair)| keypair.public.vrfs_merge(&ios_n_proofs[i].0,true))
            .collect::<Vec<VRFInOut>>();

        let mut proofs = ios_n_proofs.iter()
            .map(|(_ios, _proof, proof_batchable)| proof_batchable.clone())
            .collect::<Vec<VRFProofBatchable>>();

        let mut public_keys = keypairs.iter()
            .map(|keypair| keypair.public.clone())
            .collect::<Vec<PublicKey>>();

        assert!(
            dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_ok(),
            "Batch verification failed!"
        );
        proofs.reverse();
        assert!(
            dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
            "Batch verification with incorrect proofs passed!"
        );
        proofs.reverse();
        public_keys.reverse();
        assert!(
            dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
            "Batch verification with incorrect public keys passed!"
        );
        public_keys.reverse();
        ios.reverse();
        assert!(
            dleq_verify_batch(&ios, &proofs, &public_keys, KUSAMA_VRF).is_err(),
            "Batch verification with incorrect points passed!"
        );
    }
}