1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
//! Encoded pointer to a span region.
use crate::{
domain::Domain,
index::{
BitIdx,
BitTail,
},
mem::BitMemory,
mutability::{
Const,
Mut,
Mutability,
},
order::{
BitOrder,
Lsb0,
},
ptr::{
Address,
BitPtr,
BitPtrError,
},
slice::BitSlice,
store::BitStore,
};
use core::{
any,
convert::Infallible,
fmt::{
self,
Debug,
Display,
Formatter,
Pointer,
},
marker::PhantomData,
ptr::{
self,
NonNull,
},
};
use wyz::fmt::FmtForward;
#[cfg(any(feature = "alloc", test))]
use core::convert::TryInto;
/** Encoded handle to a bit-precision memory region.
Rust slices use a pointer/length encoding to represent regions of memory.
References to slices of data, `&[T]`, have the ABI layout `(*const T, usize)`.
`BitSpan` encodes a base address, a first-bit index, and a length counter, into
the Rust slice reference layout using this structure. This permits [`bitvec`] to
use an opaque reference type in its implementation of Rust interfaces that
require references, rather than immediate value types.
# Layout
This structure is a more complex version of the `*const T`/`usize` tuple that
Rust uses to represent slices throughout the language. It breaks the pointer and
counter fundamentals into sub-field components. Rust does not have bitfield
syntax, so the below description of the structure layout is in C++.
```cpp
template <typename T>
struct BitSpan {
uintptr_t ptr_head : __builtin_ctzll(alignof(T));
uintptr_t ptr_addr : sizeof(uintptr_T) * 8 - __builtin_ctzll(alignof(T));
size_t len_head : 3;
size_t len_bits : sizeof(size_t) * 8 - 3;
};
```
This means that the `BitSpan<O, T>` has three *logical* fields, stored in four
segments, across the two *structural* fields of the type. The widths and
placements of each segment are functions of the size of `*const T`, `usize`, and
of the alignment of the `T` referent buffer element type.
# Fields
This section describes the purpose, semantic meaning, and layout of the three
logical fields.
## Base Address
The address of the base element in a memory region is stored in all but the
lowest bits of the `ptr` field. An aligned pointer to `T` will always have its
lowest log<sub>2</sub>(byte width) bits zeroed, so those bits can be used to
store other information, as long as they are erased before dereferencing the
address as a pointer to `T`.
## Head Bit Index
For any referent element type `T`, the selection of a single bit within the
element requires log<sub>2</sub>(byte width) bits to select a byte within the
element `T`, and another three bits to select a bit within the selected byte.
|Type |Alignment|Trailing Zeros|Count Bits|
|:----|--------:|-------------:|---------:|
|`u8` | 1| 0| 3|
|`u16`| 2| 1| 4|
|`u32`| 4| 2| 5|
|`u64`| 8| 3| 6|
The index of the first live bit in the base element is split to have its three
least significant bits stored in the least significant edge of the `len` field,
and its remaining bits stored in the least significant edge of the `ptr` field.
## Length Counter
All but the lowest three bits of the `len` field are used to store a counter of
live bits in the referent region. When this is zero, the region is empty.
Because it is missing three bits, a `BitSpan` has only ⅛ of the index space of
a `usize` value.
# Significant Values
The following values represent significant instances of the `BitSpan` type.
## Null Slice
The fully-zeroed slot is not a valid member of the `BitSpan<O, T>` type; it is
reserved instead as the sentinel value for `Option::<BitSpan<O, T>>::None`.
## Canonical Empty Slice
All pointers with a `bits: 0` logical field are empty. Pointers that are used to
maintain ownership of heap buffers are not permitted to erase their `addr`
field. The canonical form of the empty slice has an `addr` value of
[`NonNull::<T>::dangling()`], but all pointers to an empty region are equivalent
regardless of address.
### Uninhabited Slices
Any empty pointer with a non-[`dangling()`] base address is considered to be an
uninhabited region. `BitSpan` never discards its address information, even as
operations may alter or erase its head-index or length values.
# Type Parameters
- `O`: The ordering within the register type. The bit-ordering used within a
region colors all pointers to the region, and orderings can never mix.
- `T`: The memory type of the referent region. `BitSpan<O, T>` is a specialized
`*[T]` slice pointer, and operates on memory in terms of the `T` type for
access instructions and pointer calculation.
# Safety
`BitSpan` values may only be constructed from pointers provided by the
surrounding program.
# Undefined Behavior
Values of this type are binary-incompatible with slice pointers. Transmutation
of these values into any other type will result in an incorrect program, and
permit the program to begin illegal or undefined behaviors. This type may never
be manipulated in any way by user code outside of the APIs it offers to this
[`bitvec`]; it certainly may not be seen or observed by other crates.
[`NonNull::<T>::dangling()`]: core::ptr::NonNull::dangling
[`bitvec`]: crate
[`dangling()`]: core::ptr::NonNull::dangling
**/
#[repr(C)]
pub(crate) struct BitSpan<M = Const, O = Lsb0, T = usize>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
/// Memory address and high bits of the head index.
///
/// This stores the address of the zeroth element of the slice, as well as
/// the high bits of the head bit cursor. It is typed as a [`NonNull<()>`]
/// in order to provide null-value optimizations to `Option<BitSpan<O, T>>`,
/// and because the presence of head-bit cursor information in the lowest
/// bits means that the bit pattern will not uphold alignment properties
/// required by `NonNull<T>`.
///
/// This field cannot be treated as the address of the zeroth byte of the
/// slice domain, because the owning handle’s [`BitOrder`] implementation
/// governs the bit pattern of the head cursor.
///
/// [`BitOrder`]: crate::order::BitOrder
/// [`NonNull<()>`]: core::ptr::NonNull
ptr: NonNull<()>,
/// Length counter and low bits of the head index.
///
/// This stores the slice length counter (measured in bits) in all but its
/// lowest three bits, and the lowest three bits of the index counter in its
/// lowest three bits.
len: usize,
/// Bit-region pointers must be colored by the bit-ordering they use.
_or: PhantomData<O>,
/// This is semantically a pointer to a `T` element.
_ty: PhantomData<Address<M, T>>,
}
impl<M, O, T> BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
/// The canonical form of a pointer to an empty region.
pub(crate) const EMPTY: Self = Self {
/* Note: this must always construct the `T` dangling pointer, and then
convert it into a pointer to `u8`. Creating `NonNull::dangling()`
directly will always instantiate the `NonNull::<u8>::dangling()`
pointer, which is VERY incorrect for any other `T` typarams.
*/
ptr: NonNull::<T>::dangling().cast::<()>(),
len: 0,
_or: PhantomData,
_ty: PhantomData,
};
/// The number of low bits of `self.len` required to hold the low bits of
/// the head [`BitIdx`] cursor.
///
/// This is always `3`, until Rust tries to target an architecture that does
/// not have 8-bit bytes.
///
/// [`BitIdx`]: crate::index::BitIdx
pub(crate) const LEN_HEAD_BITS: usize = 3;
/// Marks the bits of `self.len` that hold part of the `head` logical field.
pub(crate) const LEN_HEAD_MASK: usize = 0b111;
/// Marks the bits of `self.ptr` that hold the `addr` logical field.
pub(crate) const PTR_ADDR_MASK: usize = !0 << Self::PTR_HEAD_BITS;
/// The number of low bits of `self.ptr` required to hold the high bits of
/// the head [`BitIdx`] cursor.
///
/// [`BitIdx`]: crate::index::BitIdx
pub(crate) const PTR_HEAD_BITS: usize =
T::Mem::INDX as usize - Self::LEN_HEAD_BITS;
/// Marks the bits of `self.ptr` that hold part of the `head` logical field.
pub(crate) const PTR_HEAD_MASK: usize = !Self::PTR_ADDR_MASK;
/// The inclusive-maximum number of bits that a `BitSpan` can cover.
pub(crate) const REGION_MAX_BITS: usize = !0 >> Self::LEN_HEAD_BITS;
/// The inclusive-maximum number of elements that the region described by a
/// `BitSpan` can cover in memory.
///
/// This is the number of elements required to store [`REGION_MAX_BITS`],
/// plus one because a region could start in the middle of its base element
/// and thus push the final bits into a new element.
///
/// Since the region is ⅛th the bit span of a `usize` counter already, this
/// number is guaranteed to be well below the limits of arithmetic or Rust’s
/// own constraints on memory region handles.
///
/// [`REGION_MAX_BITS`]: Self::REGION_MAX_BITS
pub(crate) const REGION_MAX_ELTS: usize =
crate::mem::elts::<T::Mem>(Self::REGION_MAX_BITS) + 1;
// Constructors
/// Constructs an empty `BitSpan` at a bare pointer.
///
/// This is used when the region has no contents, but the pointer
/// information must be retained.
///
/// # Parameters
///
/// - `addr`: Some address of a `T` element or region. It must be valid in
/// the caller’s memory space.
///
/// # Returns
///
/// A zero-length `BitSpan` pointing to `addr`.
///
/// # Panics
///
/// This function panics if `addr` is null or misaligned. All pointers
/// received from the allocation system are required to satisfy this
/// constraint, so a failure is an exceptional program fault rather than an
/// expected logical mistake.
#[cfg(feature = "alloc")]
#[cfg(not(tarpaulin_include))]
pub(crate) fn uninhabited(addr: Address<M, T>) -> Self {
Self {
ptr: addr.to_nonnull().cast::<()>(),
len: 0,
_or: PhantomData,
_ty: PhantomData,
}
}
pub(crate) fn new(
addr: Address<M, T>,
head: BitIdx<T::Mem>,
bits: usize,
) -> Result<Self, BitSpanError<T>> {
if bits > Self::REGION_MAX_BITS {
return Err(BitSpanError::TooLong(bits));
};
let base = BitPtr::<M, O, T>::new(addr, head);
let last = base.wrapping_add(bits);
if last < base {
return Err(BitSpanError::TooHigh(addr.to_const()));
};
Ok(unsafe { Self::new_unchecked(addr, head, bits) })
}
/// Creates a new `BitSpan` from its components, without any validity
/// checks.
///
/// # Safety
///
/// ***ABSOLUTELY NONE.*** This function *only* packs its arguments into the
/// bit pattern of the `BitSpan` type. It should only be used in
/// contexts where a previously extant `BitSpan` was constructed with
/// ancestry known to have survived [`::new`], and any manipulations of its
/// raw components are known to be valid for reconstruction.
///
/// # Parameters
///
/// See [`::new`].
///
/// # Returns
///
/// See [`::new`].
///
/// [`::new`]: Self::new
pub(crate) unsafe fn new_unchecked(
addr: Address<M, T>,
head: BitIdx<T::Mem>,
bits: usize,
) -> Self {
let head = head.value() as usize;
let ptr_data = addr.value() & Self::PTR_ADDR_MASK;
let ptr_head = head >> Self::LEN_HEAD_BITS;
let len_head = head & Self::LEN_HEAD_MASK;
let len_bits = bits << Self::LEN_HEAD_BITS;
Self {
ptr: NonNull::new_unchecked((ptr_data | ptr_head) as *mut ()),
len: len_bits | len_head,
_or: PhantomData,
_ty: PhantomData,
}
}
// Converters
/// Converts an opaque `*BitSlice` wide pointer back into a `BitSpan`.
///
/// See [`::from_bitslice_ptr()`].
///
/// [`::from_bitslice_ptr()`]: Self::from_bitslice_ptr
// Mutable pointers can become mutable or immutable span descriptors.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) fn from_bitslice_ptr_mut(raw: *mut BitSlice<O, T>) -> Self {
let BitSpan { ptr, len, _or, .. } =
BitSpan::from_bitslice_ptr(raw as *const BitSlice<O, T>);
Self {
ptr,
len,
_or,
_ty: PhantomData,
}
}
/// Casts the `BitSpan` to an opaque `*BitSlice` pointer.
///
/// This is the inverse of [`::from_bitslice_ptr()`].
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// `self`, opacified as a `*BitSlice` raw pointer rather than a `BitSpan`
/// structure.
///
/// [`::from_bitslice_ptr()`]: Self::from_bitslice_ptr
// Mutable or immutable span descriptors can become immutable pointers.
pub(crate) fn to_bitslice_ptr(self) -> *const BitSlice<O, T> {
ptr::slice_from_raw_parts(
self.ptr.as_ptr() as *const u8 as *const (),
self.len,
) as *const BitSlice<O, T>
}
/// Casts the `BitSpan` to a `&BitSlice` reference.
///
/// This requires that the pointer be to a validly-allocated region that
/// is not destroyed for the duration of the provided lifetime.
/// Additionally, the bits described by `self` must not be writable by any
/// other handle.
///
/// # Lifetimes
///
/// - `'a`: A caller-provided lifetime that must not be greater than the
/// duration of the referent buffer.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// `self`, opacified as a bit-slice region reference rather than a
/// `BitSpan` structure.
// Mutable or immutable span descriptors can become immutable references.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) fn to_bitslice_ref<'a>(self) -> &'a BitSlice<O, T> {
unsafe { &*self.to_bitslice_ptr() }
}
/// Casts the span to another element type.
///
/// This does not alter the encoded value of the pointer! It only
/// reinterprets the element type, and the encoded value may shift
/// significantly in the result type. Use with caution.
pub(crate) fn cast<U>(self) -> BitSpan<M, O, U>
where U: BitStore {
let Self { ptr, len, .. } = self;
BitSpan {
ptr,
len,
..BitSpan::EMPTY
}
}
/// Split the region descriptor into three descriptors, with the interior
/// set to a different register type.
///
/// By placing the logic in `BitSpan` rather than in `BitSlice`, `BitSlice`
/// can safely call into it for both shared and exclusive references,
/// without running into any reference capability issues in the compiler.
///
/// # Type Parameters
///
/// - `U`: A second [`BitStore`] implementation. This **must** be of the
/// same type family as `T`; this restriction cannot be enforced in the
/// type system, but **must** hold at the call site.
///
/// # Safety
///
/// This can only be called within `BitSlice::align_to{,_mut}`.
///
/// # Algorithm
///
/// This uses the slice [`Domain`] to split the underlying slice into
/// regions that cannot (edge) and can (center) be reäligned. The center
/// slice is then reäligned to `U`, and the edge slices produced from *that*
/// are merged with the edge slices produced by the domain check.
///
/// This results in edge pointers returned from this function that correctly
/// handle partially-used edge elements as well as misaligned slice
/// locations.
///
/// [`BitStore`]: crate::store::BitStore
/// [`Domain`]: crate::domain::Domain
/// [`slice::align_to`]: https://doc.rust-lang.org/stable/std/primitive.slice.html#method.align_to
pub(crate) unsafe fn align_to<U>(self) -> (Self, BitSpan<M, O, U>, Self)
where U: BitStore {
match self.to_bitslice_ref().domain() {
Domain::Enclave { .. } => (self, BitSpan::EMPTY, BitSpan::EMPTY),
Domain::Region { head, body, tail } => {
// Reälign the fully-spanning center slice, creating edge
// slices of the original type to merge with `head` and `tail`.
let (l, c, r) = body.align_to::<U::Mem>();
let t_bits = T::Mem::BITS as usize;
let u_bits = U::Mem::BITS as usize;
let l_bits = l.len() * t_bits;
let c_bits = c.len() * u_bits;
let r_bits = r.len() * t_bits;
let l_addr = l.as_ptr() as *const T as *mut T;
let c_addr = c.as_ptr() as *const U as *mut U;
let r_addr = r.as_ptr() as *const T as *mut T;
/* Compute a pointer for the left-most return span.
The left span must contain the domain’s head element, if
produced, as well as the `l` slice produced above. The left span
begins in:
- if `head` exists, then `head.1`
- else, if `l` is not empty, then `l`
- else, it is the empty pointer
*/
let l_ptr = match head {
/* If the head exists, then the left span begins in it, and
runs for the remaining bits in it, and all the bits of `l`.
*/
Some((head, addr)) => BitSpan::new_unchecked(
Address::new_unchecked(addr as *const _ as usize),
head,
t_bits - head.value() as usize + l_bits,
),
// If the head does not exist, then the left span only
// covers `l`. If `l` is empty, then so is the span.
None => {
if l_bits == 0 {
BitSpan::EMPTY
}
else {
BitSpan::new_unchecked(
Address::new_unchecked(l_addr as usize),
BitIdx::ZERO,
l_bits,
)
}
},
};
let c_ptr = if c_bits == 0 {
BitSpan::EMPTY
}
else {
BitSpan::new_unchecked(
Address::new_unchecked(c_addr as usize),
BitIdx::ZERO,
c_bits,
)
};
/* Compute a pointer for the right-most return span.
The right span must contain the `r` slice produced above, as
well as the domain’s tail element, if produced. The right span
begins in:
- if `r` is not empty, then `r`
- else, if `tail` exists, then `tail.0`
- else, it is the empty pointer
*/
let r_ptr = match tail {
// If the tail exists, then the right span extends into it.
Some((addr, tail)) => BitSpan::new_unchecked(
// If the `r` slice exists, then the right span
// *begins* in it.
if r.is_empty() {
Address::new_unchecked(addr as *const T as usize)
}
else {
Address::new_unchecked(r_addr as *const T as usize)
},
BitIdx::ZERO,
tail.value() as usize + r_bits,
),
// If the tail does not exist, then the right span is only
// `r`.
None => {
// If `r` exists, then the right span covers it.
if !r.is_empty() {
BitSpan::new_unchecked(
Address::new_unchecked(r_addr as usize),
BitIdx::ZERO,
r_bits,
)
}
// Otherwise, the right span is empty.
else {
BitSpan::EMPTY
}
},
};
(l_ptr, c_ptr, r_ptr)
},
}
}
// Encoded fields
/// Gets the base element address of the referent region.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// The address of the starting element of the memory region. This address
/// is weakly typed so that it can be cast by call sites to the most useful
/// access type.
pub(crate) fn address(&self) -> Address<M, T> {
unsafe {
Address::new_unchecked(
self.ptr.as_ptr() as usize & Self::PTR_ADDR_MASK,
)
}
}
/// Overwrites the data pointer with a new address. This method does not
/// perform safety checks on the new pointer.
///
/// # Parameters
///
/// - `&mut self`
/// - `ptr`: The new address of the `BitSpan`’s domain.
///
/// # Safety
///
/// None. The invariants of [`::new`] must be checked at the caller.
///
/// [`::new`]: Self::new
#[cfg(any(feature = "alloc", test))]
pub(crate) unsafe fn set_address<A>(&mut self, addr: A)
where
A: TryInto<Address<M, T>>,
A::Error: Debug,
{
let addr = addr.try_into().unwrap();
let mut addr_value = addr.value();
addr_value &= Self::PTR_ADDR_MASK;
addr_value |= self.ptr.as_ptr() as usize & Self::PTR_HEAD_MASK;
self.ptr = NonNull::new_unchecked(addr_value as *mut ());
}
/// Gets the starting bit index of the referent region.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// A [`BitIdx`] of the first live bit in the element at the
/// [`self.address()`] address.
///
/// [`BitIdx`]: crate::index::BitIdx
/// [`self.address()`]: Self::pointer
pub(crate) fn head(&self) -> BitIdx<T::Mem> {
// Get the high part of the head counter out of the pointer.
let ptr = self.ptr.as_ptr() as usize;
let ptr_head = (ptr & Self::PTR_HEAD_MASK) << Self::LEN_HEAD_BITS;
// Get the low part of the head counter out of the length.
let len_head = self.len & Self::LEN_HEAD_MASK;
// Combine and mark as an index.
unsafe { BitIdx::new_unchecked((ptr_head | len_head) as u8) }
}
/// Write a new `head` value into the pointer, with no other effects.
///
/// # Parameters
///
/// - `&mut self`
/// - `head`: A new starting index.
///
/// # Effects
///
/// `head` is written into the `.head` logical field, without affecting
/// `.addr` or `.bits`.
#[cfg(any(feature = "alloc", test))]
pub(crate) unsafe fn set_head(&mut self, head: BitIdx<T::Mem>) {
let head = head.value() as usize;
let mut ptr = self.ptr.as_ptr() as usize;
ptr &= Self::PTR_ADDR_MASK;
ptr |= head >> Self::LEN_HEAD_BITS;
self.ptr = NonNull::new_unchecked(ptr as *mut ());
self.len &= !Self::LEN_HEAD_MASK;
self.len |= head & Self::LEN_HEAD_MASK;
}
/// Gets the number of live bits in the referent region.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// A count of how many live bits the region pointer describes.
pub(crate) fn len(&self) -> usize {
self.len >> Self::LEN_HEAD_BITS
}
/// Sets the `.bits` logical member to a new value.
///
/// # Parameters
///
/// - `&mut self`
/// - `len`: A new bit length. This must not be greater than
/// [`REGION_MAX_BITS`].
///
/// # Effects
///
/// The `new_len` value is written directly into the `.bits` logical field.
///
/// [`REGION_MAX_BITS`]: Self::REGION_MAX_BITS
pub(crate) unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(
new_len <= Self::REGION_MAX_BITS,
"Length {} out of range",
new_len,
);
self.len &= Self::LEN_HEAD_MASK;
self.len |= new_len << Self::LEN_HEAD_BITS;
}
/// Gets a pointer to the starting bit of the span.
pub(crate) fn as_bitptr(self) -> BitPtr<M, O, T> {
BitPtr::new(self.address(), self.head())
}
/// Gets the three logical components of the pointer.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// - `.0`: The base address of the referent memory region.
/// - `.1`: The index of the first live bit in the first element of the
/// region.
/// - `.2`: The number of live bits in the region.
pub(crate) fn raw_parts(&self) -> (Address<M, T>, BitIdx<T::Mem>, usize) {
(self.address(), self.head(), self.len())
}
// Computed information
/// Computes the number of elements, starting at [`self.address()`], that
/// the region touches.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// The count of all elements, starting at [`self.address()`], that contain
/// live bits included in the referent region.
///
/// [`self.address()`]: Self::pointer
pub(crate) fn elements(&self) -> usize {
// Find the distance of the last bit from the base address.
let total = self.len() + self.head().value() as usize;
// The element count is always the bit count divided by the bit width,
let base = total >> T::Mem::INDX;
// plus whether any fractional element exists after the division.
let tail = total as u8 & T::Mem::MASK;
base + (tail != 0) as usize
}
/// Computes the tail index for the first dead bit after the live bits.
///
/// # Parameters
///
/// - `&self`
///
/// # Returns
///
/// A `BitTail` that is the index of the first dead bit after the last live
/// bit in the last element. This will almost always be in the range `1 ..=
/// T::Mem::BITS`.
///
/// It will be zero only when `self` is empty.
pub(crate) fn tail(&self) -> BitTail<T::Mem> {
let (head, len) = (self.head(), self.len());
if head.value() == 0 && len == 0 {
return BitTail::ZERO;
}
// Compute the in-element tail index as the head plus the length,
// modulated by the element width.
let tail = (head.value() as usize + len) & T::Mem::MASK as usize;
/* If the tail is zero, wrap it to `T::Mem::BITS` as the maximal. This
upshifts `1` (tail is zero) or `0` (tail is not), then sets the upshift
on the rest of the tail, producing something in the range
`1 ..= T::Mem::BITS`.
*/
unsafe {
BitTail::new_unchecked(
(((tail == 0) as u8) << T::Mem::INDX) | tail as u8,
)
}
}
// Manipulators
/// Increments the `.head` logical field, rolling over into `.addr`.
///
/// # Parameters
///
/// - `&mut self`
///
/// # Effects
///
/// Increments `.head` by one. If the increment resulted in a rollover to
/// `0`, then the `.addr` field is increased to the next [`T::Mem`]
/// stepping.
///
/// [`T::Mem`]: crate::store::BitStore::Mem
pub(crate) unsafe fn incr_head(&mut self) {
// Increment the cursor, permitting rollover to `T::Mem::BITS`.
let head = self.head().value() as usize + 1;
// Write the low bits into the `.len` field, then discard them.
self.len &= !Self::LEN_HEAD_MASK;
self.len |= head & Self::LEN_HEAD_MASK;
let head = head >> Self::LEN_HEAD_BITS;
// Erase the high bits of `.head` from `.ptr`,
let mut ptr = self.ptr.as_ptr() as usize;
ptr &= Self::PTR_ADDR_MASK;
/* Then numerically add the high bits of `.head` into the low bits of
`.ptr`. If the head increment rolled over into a new element, this will
have the effect of raising the `.addr` logical field to the next element
address, in one instruction.
*/
ptr += head;
self.ptr = NonNull::new_unchecked(ptr as *mut ());
}
// Comparators
/// Renders the pointer structure into a formatter for use during
/// higher-level type [`Debug`] implementations.
///
/// # Parameters
///
/// - `&self`
/// - `fmt`: The formatter into which the pointer is rendered.
/// - `name`: The suffix of the structure rendering its pointer. The `Bit`
/// prefix is applied to the object type name in this format.
/// - `fields`: Any additional fields in the object’s debug info to be
/// rendered.
///
/// # Returns
///
/// The result of formatting the pointer into the receiver.
///
/// # Behavior
///
/// This function writes `Bit{name}<{ord}, {type}> {{ {fields } }}` into the
/// `fmt` formatter, where `{fields}` includes the address, head index, and
/// bit length of the pointer, as well as any additional fields provided by
/// the caller.
///
/// Higher types in the crate should use this function to drive their
/// [`Debug`] implementations, and then use [`BitSlice`]’s list formatters
/// to display their buffer contents.
///
/// [`BitSlice`]: crate::slice::BitSlice
/// [`Debug`]: core::fmt::Debug
pub(crate) fn render<'a>(
&'a self,
fmt: &'a mut Formatter,
name: &'a str,
fields: impl IntoIterator<Item = &'a (&'a str, &'a dyn Debug)>,
) -> fmt::Result {
write!(
fmt,
"Bit{}<{}, {}>",
name,
any::type_name::<O>(),
any::type_name::<T::Mem>()
)?;
let mut builder = fmt.debug_struct("");
builder
.field("addr", &self.address().fmt_pointer())
.field("head", &self.head().fmt_binary())
.field("bits", &self.len());
for (name, value) in fields {
builder.field(name, value);
}
builder.finish()
}
}
impl<O, T> BitSpan<Const, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Converts an opaque `*BitSlice` wide pointer back into a `BitSpan`.
///
/// This should compile down to a noöp, but the implementation should
/// nevertheless be an explicit deconstruction and reconstruction rather
/// than a bare [`mem::transmute`], to guard against unforseen compiler
/// reördering.
///
/// # Parameters
///
/// - `raw`: An opaque bit-region pointer
///
/// # Returns
///
/// `raw`, interpreted as a `BitSpan` so that it can be used as more than an
/// opaque handle.
///
/// [`mem::transmute`]: core::mem::transmute
// Immutable pointers can only become immutable span descriptors.
pub(crate) fn from_bitslice_ptr(raw: *const BitSlice<O, T>) -> Self {
let slice_nn = match NonNull::new(raw as *const [()] as *mut [()]) {
Some(nn) => nn,
None => return Self::EMPTY,
};
let ptr = slice_nn.cast::<()>();
let len = unsafe { slice_nn.as_ref() }.len();
Self {
ptr,
len,
_or: PhantomData,
_ty: PhantomData,
}
}
/// Assert that an immutable span pointer is in fact mutable.
///
/// This can only be called from a context where a mutable span descriptor
/// was lowered to immutable and needs to be re-raised; it is Undefined
/// Behavior in the compiler to call it on a span descriptor that was never
/// mutable.
pub(crate) unsafe fn assert_mut(self) -> BitSpan<Mut, O, T> {
let Self { ptr, len, _or, .. } = self;
BitSpan {
ptr,
len,
_or,
_ty: PhantomData,
}
}
}
impl<O, T> BitSpan<Mut, O, T>
where
O: BitOrder,
T: BitStore,
{
/// Casts the `BitSpan` to an opaque `*BitSlice` pointer.
///
/// See [`.to_bitslice_ptr()`].
///
/// [`.to_bitslice_ptr()`]: Self::to_bitslice_ptr
// Only mutable span descriptors can become mutable pointers.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) fn to_bitslice_ptr_mut(self) -> *mut BitSlice<O, T> {
self.to_bitslice_ptr() as *mut BitSlice<O, T>
}
/// Casts the `BitSpan` to a `&mut BitSlice` reference.
///
/// This requires that the pointer be to a validly-allocated region that is
/// not destroyed for the duration of the provided lifetime. Additionally,
/// the bits described by `self` must not be viewable by any other handle.
///
/// # Lifetimes
///
/// - `'a`: A caller-provided lifetime that must not be greater than the
/// duration of the referent buffer.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// `self`, opacified as an exclusive bit-slice region reference rather than
/// a `BitSpan` structure.
// Only mutable span descriptors can become mutable references.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub(crate) fn to_bitslice_mut<'a>(self) -> &'a mut BitSlice<O, T> {
unsafe { &mut *self.to_bitslice_ptr_mut() }
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Clone for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
fn clone(&self) -> Self {
*self
}
}
impl<M, O, T> Eq for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
}
impl<M1, M2, O, T1, T2> PartialEq<BitSpan<M2, O, T2>> for BitSpan<M1, O, T1>
where
M1: Mutability,
M2: Mutability,
O: BitOrder,
T1: BitStore,
T2: BitStore,
{
fn eq(&self, other: &BitSpan<M2, O, T2>) -> bool {
let (addr_a, head_a, bits_a) = self.raw_parts();
let (addr_b, head_b, bits_b) = other.raw_parts();
// Since ::BITS is an associated const, the compiler will automatically
// replace the entire function with `false` when the types don’t match.
T1::Mem::BITS == T2::Mem::BITS
&& addr_a.value() == addr_b.value()
&& head_a.value() == head_b.value()
&& bits_a == bits_b
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Default for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline(always)]
fn default() -> Self {
Self::EMPTY
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Debug for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Pointer::fmt(self, fmt)
}
}
#[cfg(not(tarpaulin_include))]
impl<M, O, T> Pointer for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
self.render(fmt, "Ptr", None)
}
}
impl<M, O, T> Copy for BitSpan<M, O, T>
where
M: Mutability,
O: BitOrder,
T: BitStore,
{
}
/// An error produced when creating `BitSpan` encoded references.
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub enum BitSpanError<T>
where T: BitStore
{
/// The base `BitPtr` is invalid.
InvalidBitptr(BitPtrError<T>),
/// `BitSpan` domains have a length ceiling.
TooLong(usize),
/// `BitSpan` domains have an address ceiling.
TooHigh(*const T),
}
#[cfg(not(tarpaulin_include))]
impl<T> From<BitPtrError<T>> for BitSpanError<T>
where T: BitStore
{
#[inline(always)]
fn from(err: BitPtrError<T>) -> Self {
Self::InvalidBitptr(err)
}
}
#[cfg(not(tarpaulin_include))]
impl<T> From<Infallible> for BitSpanError<T>
where T: BitStore
{
#[inline(always)]
fn from(_: Infallible) -> Self {
unreachable!("Infallible errors can never be produced");
}
}
#[cfg(not(tarpaulin_include))]
impl<T> Debug for BitSpanError<T>
where T: BitStore
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
let tname = any::type_name::<T>();
write!(fmt, "BitSpanError<{}>::", tname,)?;
match self {
Self::InvalidBitptr(err) => {
fmt.debug_tuple("InvalidBitptr").field(&err).finish()
},
Self::TooLong(len) => {
fmt.debug_tuple("TooLong").field(&len).finish()
},
Self::TooHigh(addr) => {
fmt.debug_tuple("TooHigh").field(&addr).finish()
},
}
}
}
#[cfg(not(tarpaulin_include))]
impl<T> Display for BitSpanError<T>
where T: BitStore
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
match self {
Self::InvalidBitptr(err) => Display::fmt(err, fmt),
Self::TooLong(len) => write!(
fmt,
"Length {} is too long to encode in a bit slice, which can \
only accept {} bits",
len,
BitSpan::<Const, Lsb0, usize>::REGION_MAX_BITS
),
Self::TooHigh(addr) => {
write!(fmt, "Address {:p} would wrap the address space", addr)
},
}
}
}
unsafe impl<T> Send for BitSpanError<T> where T: BitStore
{
}
unsafe impl<T> Sync for BitSpanError<T> where T: BitStore
{
}
#[cfg(feature = "std")]
impl<T> std::error::Error for BitSpanError<T> where T: BitStore
{
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
prelude::*,
ptr::AddressError,
};
use core::{
mem,
ptr,
};
#[test]
fn ctor() {
assert!(matches!(
Address::<Const, u8>::new(0),
Err(AddressError::Null)
));
assert!(matches!(
Address::<Const, u16>::new(3),
Err(AddressError::Misaligned(addr)) if addr as usize == 3
));
// Double check the null pointers, but they are in practice impossible
// to construct.
assert_eq!(
BitSpan::<Const, LocalBits, u8>::from_bitslice_ptr(
ptr::slice_from_raw_parts(ptr::null::<()>(), 1)
as *mut BitSlice<LocalBits, u8>
),
BitSpan::<Const, LocalBits, u8>::EMPTY,
);
let data = 0u16;
let mut addr = Address::from(&data);
let head = BitIdx::new(5).unwrap();
assert!(BitSpan::<_, Lsb0, _>::new(addr, head, !3).is_err());
addr = unsafe { Address::new_unchecked(!1) };
assert!(BitSpan::<_, Lsb0, _>::new(addr, head, 50).is_err());
}
#[test]
fn recast() {
let data = 0u32;
let bitspan = unsafe { BitPtr::from_ref(&data).span_unchecked(32) };
let raw_ptr = bitspan.to_bitslice_ptr();
assert_eq!(
bitspan,
BitSpan::<Const, Lsb0, u32>::from_bitslice_ptr(raw_ptr)
);
}
#[test]
fn realign() {
let data = [0u8; 10];
let bits = data.view_bits::<LocalBits>();
let (l, c, r) = unsafe { bits.as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 80);
let (l, c, r) = unsafe { bits[4 ..].as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 76);
let (l, c, r) = unsafe { bits[.. 76].as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 76);
let (l, c, r) = unsafe { bits[8 ..].as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 72);
let (l, c, r) = unsafe { bits[.. 72].as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 72);
let (l, c, r) = unsafe { bits[4 .. 76].as_bitspan().align_to::<u16>() };
assert_eq!(l.len() + c.len() + r.len(), 72);
}
#[test]
fn modify() {
let (a, b) = (0u16, 1u16);
let mut bitspan = a.view_bits::<LocalBits>().as_bitspan();
let mut expected = (&a as *const _ as usize, 16usize << 3);
assert_eq!(bitspan.address().to_const(), &a as *const _);
assert_eq!(bitspan.ptr.as_ptr() as usize, expected.0);
assert_eq!(bitspan.len, expected.1);
expected.0 = &b as *const _ as usize;
unsafe {
bitspan.set_address(&b as *const _);
}
assert_eq!(bitspan.address().to_const(), &b as *const _);
assert_eq!(bitspan.ptr.as_ptr() as usize, expected.0);
assert_eq!(bitspan.len, expected.1);
let orig_head = bitspan.head();
unsafe {
bitspan.set_head(orig_head.next().0);
}
assert_eq!(bitspan.head(), orig_head.next().0);
}
#[test]
fn mem_size() {
assert_eq!(
mem::size_of::<BitSpan<Const, LocalBits, usize>>(),
mem::size_of::<*const [usize]>()
);
assert_eq!(
mem::size_of::<Option<BitSpan<Const, LocalBits, usize>>>(),
mem::size_of::<*const [usize]>()
);
}
#[test]
#[cfg(feature = "alloc")]
fn render() {
#[cfg(not(feature = "std"))]
use alloc::format;
assert_eq!(
format!("{}", Address::<Const, u8>::new(0).unwrap_err()),
"`bitvec` will not operate on the null pointer"
);
assert_eq!(
format!("{}", Address::<Const, u16>::new(0x13579).unwrap_err()),
"`bitvec` requires that the address 0x13579 clear its least 1 bits \
to be aligned for type u16"
);
assert_eq!(
format!("{}", Address::<Const, u32>::new(0x13579).unwrap_err()),
"`bitvec` requires that the address 0x13579 clear its least 2 bits \
to be aligned for type u32"
);
}
}