1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*! Mirror of the [`core::ptr`] module and `bitvec`-specific pointer structures.

# Types

As `bitvec` is not the standard library, it does not have the freedom to use
language builtins such as actual pointers. Instead, `bitvec` uses its own
analagous structures:

- [`BitPtr<M, O, T>`]: This represents a pointer to a single bit, and is vaguely
  similar to `*const bool`, `*mut bool`, and `NonNull<bool>`. It consists of a
  (non-null, well-aligned) pointer to a `T` memory element and a bit-index
  within that element. It uses the `O` ordering implementation to access the
  selected bit, and uses `M` to determine whether it has write permissions to
  the location.
- [`BitPtrRange<M, O, T>`]: This is equivalent to `Range<BitPtr<M, O, T>>`. It
  exists because [`Range`] has some associated types that are still unstable to
  implement for its type parameters. It is also smaller than the `Range` would
  be, because it can take advantage of layout optimizations.
- [`BitRef<M, O, T>`]: This is a proxy reference type, equivalent to the C++
  [`bitset<N>::reference`]. It implements `Deref` and, if `M` is `Mut`,
  `DerefMut` to bool, so that it can be read from and written to as if it were
  an `&bool` or `&mut bool`. It is **not** a referent type, and cannot be used
  in APIs that expect actual references. It is implemented under the hood as a
  `BitPtr` with a `bool` cached in one of the padding bytes.
- `BitSpan<M, O, T>`: This is a crate-internal type that encodes a `BitPtr` and
  a length counter into a two-word structure that can be transmuted into
  `*BitSlice<O, T>`. This type enforces the non-null/well-aligned rule, and is
  the source of the limitation that `bitvec` region types can only address ⅛ of
  a `usize`, rather than the ½ limitation of the standard library collections.

  This type is not public API; it will only ever appear in its transmuted form,
  `*BitSlice<O, T>`. Users are **not permitted** to use any of the [`core::ptr`]
  or [`pointer`] functions to view or modify `*BitSlice` pointers, or their
  referent locations, in any way.

# Safety

The functions in this module take `bitvec` equivalents to raw pointers as their
arguments and read from or write to them. For this to be safe, these pointers
must be *valid*. Whether a pointer is valid depends on the operation it is used
for (reading or writing), and the extent of the memory that is accessed (i.e.
how many bits are read/written in and how many underlying memory elements are
accessed). Most functions use [`BitPtr`] to access only a single bit, in which
case the documentation omits the size and implicitly assumes it to be one bit in
one `T` element.

The Rust rules about pointer validity are always in effect; `bitvec` refines
them to a bit-precision granularity, but must still respect the byte-level and
element-level rules.

# Crate-Specific Restrictions

`bitvec` uses an internal encoding scheme to make bit-region pointers fit into a
standard Rust slice pointer. This encoding requires that the base element
address of a bit-pointer be *non-null* and *well-aligned* for all pointers that
are used in the encoding scheme.

The `bitvec` structure used to emulate a pointer to a single bit is larger than
one processor word, and thus cannot be encoded to fit in a `*const Bit`. To ease
internal complexity, these restrictions are universal in `bitvec`: the crate as
a whole refuses to operate on null pointers, or pointers that are not aligned to
their referent type, even if your usage never touches the span encoding.

As such, the pointer types in this module can essentially only be sourced from
references, not from arbitrary address values. While this module attempts to
rely on actual Rust references as much as possible, and instead use only the
ordinary [`core::ptr`] and [`pointer`] functions. This is not always possible;
in particular, Rust does not offer stable atomic intrinsics, and instead only
allows them to be used on references.

[`BitPtr`]: crate::ptr::BitPtr
[`BitPtr<M, O, T>`]: crate::ptr::BitPtr
[`BitPtrRange<M, O, T>`]: crate::ptr::BitPtrRange
[`BitRef<M, O, T>`]: crate::ptr::BitRef
[`BitSpan<M, O, T>`]: crate::ptr::BitSpan
[`Range`]: core::ops::Range
[`bitset<N>::reference`]: https://en.cppreference.com/w/cpp/utility/bitset/reference
[`core::ptr`]: core::ptr
[`pointer`]: https://doc.rust-lang.org/std/primitive.pointer.html
!*/

use crate::{
	order::BitOrder,
	slice::BitSlice,
	store::BitStore,
};

use core::hash::{
	Hash,
	Hasher,
};

mod address;
mod proxy;
pub(crate) mod range;
mod single;
mod span;

pub(crate) use self::span::BitSpan;

pub use crate::{
	mutability::{
		Const,
		Mut,
	},
	ptr::{
		address::{
			Address,
			AddressError,
		},
		proxy::BitRef,
		range::BitPtrRange,
		single::{
			BitPtr,
			BitPtrError,
		},
		span::BitSpanError,
	},
};

/// Copies `count` bits from `src` to `dst`. The source and destination may
/// overlap.
///
/// If the source and destination will *never* overlap, [`copy_nonoverlapping`]
/// can be used instead.
///
/// `copy` is semantically equivalent to C’s [`memmove`], but with the argument
/// order swapped. Copying takes place as if the bits were copied from `src` to
/// a temporary array, then copied from the array into `dst`.
///
/// # Original
///
/// [`ptr::copy`](core::ptr::copy)
///
/// # API Differences
///
/// The pointers may differ in bit-ordering or storage element types. `bitvec`
/// considers it Undefined Behavior for two pointer regions to overlap in memory
/// if they have different bit-orderings, and so will only perform overlap
/// detection when `O1` and `O2` match.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// - `src` must be [valid] for reads of `count` bits.
/// - `dst` must be [valid] for writes of `count` bits.
/// - `src` and `dst` must not overlap if they have different bit-ordering
///   parameters.
///
/// The type parameters `T1` and `T2` are permitted to differ.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let start = 0b1011u8;
/// let mut end = 0u16;
///
/// unsafe {
///   bitvec::ptr::copy::<Lsb0, Msb0, _, _>(
///     (&start).into(),
///     (&mut end).into(),
///     4,
///   );
/// }
/// assert_eq!(end, 0b1101_0000__0000_0000);
/// ```
///
/// Overlapping regions:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut x = 0b1111_0010u8;
/// let src = BitPtr::<_, Lsb0, _>::from_mut(&mut x);
/// let dst = unsafe { src.add(2) };
///
/// unsafe {
///   bitvec::ptr::copy(src.immut(), dst, 4);
/// }
/// assert_eq!(x, 0b1100_1010);
/// //                ^^ ^^ bottom nibble moved here
/// ```
///
/// [valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
/// [`copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping
/// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
#[inline]
pub unsafe fn copy<O1, O2, T1, T2>(
	src: BitPtr<Const, O1, T1>,
	dst: BitPtr<Mut, O2, T2>,
	count: usize,
) where
	O1: BitOrder,
	O2: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	src.copy_to(dst, count);
}

/// Copies `count` bits from `src` to `dst`. The source and destination must
/// *not* overlap.
///
/// For regions of memory which might overlap, use [`copy`] instead.
///
/// `copy_nonoverlapping` is semantically equivalent to C’s [`memcpy`], but with
/// the argument order swapped.
///
/// # Original
///
/// [`ptr::copy_nonoverlapping`](core::ptr::copy_nonoverlapping)
///
/// # API Differences
///
/// The pointers may differ in bit-ordering or storage element parameters.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// - `src` must be [valid] for reads of `count` bits.
/// - `dst` must be [valid] for writes of `count` bits.
/// - The region of memory beginning at `src` with a size of `count` bits must
///   not overlap with the region of memory beginning at `dst` with the same
///   size.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = 0b1011u8;
/// let ptr = BitPtr::<_, Msb0, _>::from_mut(&mut data);
///
/// unsafe {
///   bitvec::ptr::copy_nonoverlapping(
///     ptr.add(4).immut(),
///     ptr,
///     4,
///   );
/// }
/// assert_eq!(data, 0b1011_1011);
/// ```
///
/// [valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
/// [`copy`]: crate::ptr::copy
/// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
#[inline]
pub unsafe fn copy_nonoverlapping<O1, O2, T1, T2>(
	src: BitPtr<Const, O1, T1>,
	dst: BitPtr<Mut, O2, T2>,
	count: usize,
) where
	O1: BitOrder,
	O2: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	src.copy_to_nonoverlapping(dst, count);
}

/** Compares raw bit-pointers for equality.

This is the same as using the `==` operator, but less generic: the arguments
have to be `BitPtr<Const, _, _>` bit-pointers, not anything that implements
`PartialEq`.

# Original

[`ptr::eq`](core::ptr::eq)

# API Differences

The two pointers can differ in their storage type parameters. `bitvec` defines
pointer equality only between pointers with the same underlying `BitStore::Mem`
register type.

This cannot compare span pointers. `*const BitSlice` can be used in the standard
library `ptr::eq` and does not need an override.

# Examples

```rust
use bitvec::prelude::*;
use core::cell::Cell;

let data = 0u8;
let bare_ptr = BitPtr::<_, Lsb0, _>::from_ref(&data);
let cell_ptr = bare_ptr.cast::<Cell<u8>>();

assert!(bitvec::ptr::eq(bare_ptr, cell_ptr));
```
**/
#[inline]
pub fn eq<O, T1, T2>(a: BitPtr<Const, O, T1>, b: BitPtr<Const, O, T2>) -> bool
where
	O: BitOrder,
	T1: BitStore,
	T2: BitStore,
	BitPtr<Const, O, T1>: PartialEq<BitPtr<Const, O, T2>>,
{
	a == b
}

/** Hash a raw bit-pointer.

This can be used to prove hashing the pointer address value, rather than the
referent bit.

# Original

[`ptr::hash`](core::ptr::hash)
**/
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn hash<O, T, S>(hashee: BitPtr<Const, O, T>, into: &mut S)
where
	O: BitOrder,
	T: BitStore,
	S: Hasher,
{
	hashee.hash(into);
}

/** Reads the bit from `src`.

# Original

[`ptr::read`](core::ptr::read)

# Safety

Behavior is undefined if any of the following conditions are violated:

- `src` must be [valid] for reads.
- `src` must point to a properly initialized value of type `T`.

# Examples

```rust
use bitvec::prelude::*;

let data = 128u8;
let ptr = BitPtr::<_, Msb0, _>::from_ref(&data);
assert!(unsafe {
  bitvec::ptr::read(ptr)
});
```

[valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
**/
#[inline]
pub unsafe fn read<O, T>(src: BitPtr<Const, O, T>) -> bool
where
	O: BitOrder,
	T: BitStore,
{
	src.read()
}

/** Performs a volatile read of the bit from `src`.

Volatile operations are intended to act on I/O memory, and are guaranteed to not
be elided or reördered by the compiler across other volatile operations.

# Original

[`ptr::read_volatile`](core::ptr::read_volatile)

# Notes

Rust does not curretnly have a rigorously and formally defined memory model, so
the precise semantics of what “volatile” means here is subject to change over
time. That being said, the semantics will almost always end up pretty similar to
[C11’s definition of volatile][c11].

The compiler shouldn’t change the relative order or number of volatile memory
operations.

# Safety

Behavior is undefined if any of the following conditions are violated:

- `dst` must be [valid] for reads
- `dst` must point to a properly initialized value of type `T`
- no other pointer must race `dst` to view or modify the referent location
  unless `T` is capable of ensuring race safety.

Just like in C, whether an operation is volatile has no bearing whatsoëver on
questions involving concurrent access from multiple threads. Volatile accesses
behave exactly like non-atomic accesses in that regard. In particular, a race
between a `read_volatile` and any write operation on the same location is
undefined behavior.

This is true even for atomic types! This instruction is an ordinary load that
the compiler will not remove. It is *not* an atomic instruction.

# Examples

```rust
use bitvec::prelude::*;

let data = 4u8;
let ptr = BitPtr::<_, Lsb0, _>::from_ref(&data);
unsafe {
  assert!(bitvec::ptr::read_volatile(ptr.add(2)));
}
```

[c11]: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
[valid]: https://doc.rust-lang.org/core/ptr/index.html#safety
**/
#[inline]
pub unsafe fn read_volatile<O, T>(src: BitPtr<Const, O, T>) -> bool
where
	O: BitOrder,
	T: BitStore,
{
	src.read_volatile()
}

/** Moves `src` into the pointed `dst`, returning the previous `dst` bit.

This function is semantically equivalent to [`BitRef::replace`] except that it
operates on raw pointers instead of references. When a proxy reference is
available, prefer [`BitRef::replace`].

# Original

[`ptr::replace`](core::ptr::replace)

# Safety

Behavior is undefined if any of the following conditions are violated:

- `dst` must be [valid] for both reads and writes.
- `dst` must point to a properly initialized value of type `T`.

# Examples

```rust
use bitvec::prelude::*;

let mut data = 4u8;
let ptr = BitPtr::<_, Lsb0, _>::from_mut(&mut data);
assert!(unsafe {
  bitvec::ptr::replace(ptr.add(2), false)
});
assert_eq!(data, 0);
```

[valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
[`BitPtr::replace`]: crate::ptr::BitRef::replace
**/
#[inline]
pub unsafe fn replace<O, T>(dst: BitPtr<Mut, O, T>, src: bool) -> bool
where
	O: BitOrder,
	T: BitStore,
{
	dst.replace(src)
}

/** Forms a raw bit-slice from a bit-pointer and a length.

The `len` argument is the number of **bits**, not the number of elements.

This function is safe, but actually using the return value is unsafe. See the
documentation of [`slice::from_raw_parts`] for bit-slice safety requirements.

# Original

[`ptr::slice_from_raw_parts`](core::ptr::slice_from_raw_parts)

# Examples

```rust
use bitvec::ptr;
use bitvec::order::Lsb0;

let x = [5u8, 10, 15];
let bitptr = ptr::BitPtr::<_, Lsb0, _>::from_ref(&x[0]);
let bitslice = ptr::bitslice_from_raw_parts(bitptr, 24);
assert_eq!(unsafe { &*bitslice }[2], true);
```

[`slice::from_raw_parts`]: crate::slice::from_raw_parts
**/
#[inline]
pub fn bitslice_from_raw_parts<O, T>(
	data: BitPtr<Const, O, T>,
	len: usize,
) -> *const BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	unsafe { data.span_unchecked(len) }.to_bitslice_ptr()
}

/** Performs the same functionality as [`bitslice_from_raw_parts`], except that
a raw mutable bit-slice is returned, as opposed to a raw immutable bit-slice.

See the documentation of [`bitslice_from_raw_parts`] for more details.

This function is safe, but actually using the return value is unsafe. See the
documentation of [`slice::from_raw_parts_mut`] for bit-slice safety
requirements.

# Original

[`ptr::slice_from_raw_parts`](core::ptr::slice_from_raw_parts)

# Examples

```rust
use bitvec::ptr;
use bitvec::order::Lsb0;

let mut x = [5u8, 10, 15];
let bitptr = ptr::BitPtr::<_, Lsb0, _>::from_mut(&mut x[0]);
let bitslice = ptr::bitslice_from_raw_parts_mut(bitptr, 24);
unsafe { &mut *bitslice }.set(0, true);
assert!(unsafe { &*bitslice }[0]);
```

[`bitslice_from_raw_parts`]: crate::ptr::bitslice_from_raw_parts
[`slice::from_raw_parts_mut`]: crate::slice::from_raw_parts_mut
**/
#[inline]
pub fn bitslice_from_raw_parts_mut<O, T>(
	data: BitPtr<Mut, O, T>,
	len: usize,
) -> *mut BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	unsafe { data.span_unchecked(len).to_bitslice_ptr_mut() }
}

/** Swaps the values at two mutable locations.

But for the following exception, this function is semantically equivalent to
[`BitRef::swap`]: it operates on raw pointers instead of references. When
references are available, prefer [`BitRef::swap`].

# Original

[`ptr::swap`](core::ptr::swap)

# Safety

Behavior is undefined if any of the following conditions are violated:

- Both `x` and `y` must be [valid] for both reads and writes.
- Both `x` and `y` must point to initialized instances of type `T1` and `T2`,
  respectively.

# Examples

```rust
use bitvec::prelude::*;

let mut data = 2u8;
let x = BitPtr::<_, Lsb0, _>::from_mut(&mut data);
let y = unsafe { x.add(1) };

unsafe {
  bitvec::ptr::swap(x, y);
}
assert_eq!(data, 1);
```

[valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
[`BitRef::swap`]: crate::ptr::BitRef::swap
**/
#[inline]
pub unsafe fn swap<O1, O2, T1, T2>(
	x: BitPtr<Mut, O1, T1>,
	y: BitPtr<Mut, O2, T2>,
) where
	O1: BitOrder,
	O2: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	x.swap(y);
}

/** Swaps `count` bits between the two regions of memory beginning at `x` and
`y`. The two regions must *not* overlap.

# Original

[`ptr::swap_nonoverlapping`](core::ptr::swap_nonoverlapping)

# Safety

Behavior is undefined if any of the following conditions are violated:

- Both `x` and `y` must be [valid] for both reads and writes of `count` bits.
- Both `x` and `y` must be fully initialized instances of `T` for all `count`
  bits.
- The regions may have overlapping elements, but must not overlap the concrete
  bits they describe.

Note that even if `count` is `0`, the pointers must still be validly
constructed, non-null, and well-aligned.

# Examples

```rust
use bitvec::prelude::*;

let mut x = [0u8; 2];
let mut y = !0u16;
let x_ptr = BitPtr::<_, Lsb0, _>::from_mut(&mut x[0]);
let y_ptr = BitPtr::<_, Msb0, _>::from_mut(&mut y);

unsafe {
  bitvec::ptr::swap_nonoverlapping(x_ptr, y_ptr, 16);
}
assert_eq!(x, [!0; 2]);
assert_eq!(y, 0);
```

[valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
**/
#[inline]
pub unsafe fn swap_nonoverlapping<O1, O2, T1, T2>(
	x: BitPtr<Mut, O1, T1>,
	y: BitPtr<Mut, O2, T2>,
	count: usize,
) where
	O1: BitOrder,
	O2: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	for (a, b) in x.range(count).zip(y.range(count)) {
		swap(a, b);
	}
}

/** Overwrites a memory location with the given bit.

Because this reads from memory in order to construct the new value, it cannot be
used to set uninitialized memory. The referent `T` element must be fully
initialized (such as with [`core::ptr::write`]) before setting bits with this
function.

# Original

[`ptr::write`](core::ptr::write)

# Safety

Behavior is undefined if any of the following conditions are violated:

- `dst` must be [valid] for writes
- `dst` must point to a properly initialized value of type `T`
- no other pointer must race `dst` to view or modify the referent location
  unless `T` is capable of ensuring race safety.

# Examples

```rust
use bitvec::prelude::*;

let mut data = 0u8;
let ptr = BitPtr::<_, Lsb0, _>::from_mut(&mut data);
unsafe {
  bitvec::ptr::write(ptr.add(2), true);
}
assert_eq!(data, 4);
```

[valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
[`core::ptr::write`]: core::ptr::write
**/
#[inline]
pub unsafe fn write<O, T>(dst: BitPtr<Mut, O, T>, value: bool)
where
	O: BitOrder,
	T: BitStore,
{
	dst.write(value);
}

/** Performs a volatile write of a memory location with the given bit.

Because processors do not have single-bit write instructions, this must
perform a volatile read of the location, perform the bit modification within
the processor register, then perform a volatile write back to memory. These
three steps are guaranteed to be atomic.

Volatile operations are intended to act on I/O memory, and are guaranteed
not to be elided or reördered by the compiler across other volatile
operations.

# Original

[`ptr::write_volatile`](core::ptr::write_volatile)

# Notes

Rust does not curretnly have a rigorously and formally defined memory model,
so the precise semantics of what “volatile” means here is subject to change
over time. That being said, the semantics will almost always end up pretty
similar to [C11’s definition of volatile][c11].

The compiler shouldn’t change the relative order or number of volatile
memory operations.

# Safety

Behavior is undefined if any of the following conditions are violated:

- `dst` must be [valid] for writes
- no other pointer must race `dst` to view or modify the referent location
  unless `T` is capable of ensuring race safety.

Just like in C, whether an operation is volatile has no bearing whatsoëver
on questions involving concurrent access from multiple threads. Volatile
accesses behave exactly like non-atomic accesses in that regard. In
particular, a race between a `write_volatile` and any other operation
(reading or writing) on the same location is undefined behavior.

This is true even for atomic types! This instruction is an ordinary store
that the compiler will not remove. It is *not* an atomic instruction.

# Examples

```rust
use bitvec::prelude::*;

let mut data = 0u8;
let ptr = BitPtr::<_, Lsb0, _>::from_mut(&mut data);
unsafe {
  bitvec::ptr::write_volatile(ptr, true);
  assert!(bitvec::ptr::read_volatile(ptr.immut()));
}
```

[c11]: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
[valid]: https://doc.rust-lang.org/core/ptr/index.html#safety
**/
#[inline]
pub unsafe fn write_volatile<O, T>(dst: BitPtr<Mut, O, T>, value: bool)
where
	O: BitOrder,
	T: BitStore,
{
	dst.write_volatile(value);
}

#[cfg(test)]
mod tests;