1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use hash_db::Hasher;
use crate::nibble::{self, NibbleSlice};
use crate::nibble::nibble_ops;
use crate::node_codec::NodeCodec;

use crate::rstd::{borrow::Borrow, ops::Range};

/// Partial node key type: offset and owned value of a nibbleslice.
/// Offset is applied on first byte of array (bytes are right aligned).
pub type NodeKey = (usize, nibble::BackingByteVec);

/// A reference to a trie node which may be stored within another trie node.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum NodeHandle<'a> {
	Hash(&'a [u8]),
	Inline(&'a [u8]),
}

/// Read a hash from a slice into a Hasher output. Returns None if the slice is the wrong length.
pub fn decode_hash<H: Hasher>(data: &[u8]) -> Option<H::Out> {
	if data.len() != H::LENGTH {
		return None;
	}
	let mut hash = H::Out::default();
	hash.as_mut().copy_from_slice(data);
	Some(hash)
}

/// Type of node in the trie and essential information thereof.
#[derive(Eq, PartialEq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum Node<'a> {
	/// Null trie node; could be an empty root or an empty branch entry.
	Empty,
	/// Leaf node; has key slice and value. Value may not be empty.
	Leaf(NibbleSlice<'a>, &'a [u8]),
	/// Extension node; has key slice and node data. Data may not be null.
	Extension(NibbleSlice<'a>, NodeHandle<'a>),
	/// Branch node; has slice of child nodes (each possibly null)
	/// and an optional immediate node data.
	Branch([Option<NodeHandle<'a>>; nibble_ops::NIBBLE_LENGTH], Option<&'a [u8]>),
	/// Branch node with support for a nibble (when extension nodes are not used).
	NibbledBranch(NibbleSlice<'a>, [Option<NodeHandle<'a>>; nibble_ops::NIBBLE_LENGTH], Option<&'a [u8]>),
}

/// A `NodeHandlePlan` is a decoding plan for constructing a `NodeHandle` from an encoded trie
/// node. This is used as a substructure of `NodePlan`. See `NodePlan` for details.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum NodeHandlePlan {
	Hash(Range<usize>),
	Inline(Range<usize>),
}

impl NodeHandlePlan {
	/// Build a node handle by decoding a byte slice according to the node handle plan. It is the
	/// responsibility of the caller to ensure that the node plan was created for the argument
	/// data, otherwise the call may decode incorrectly or panic.
	pub fn build<'a, 'b>(&'a self, data: &'b [u8]) -> NodeHandle<'b> {
		match self {
			NodeHandlePlan::Hash(range) => NodeHandle::Hash(&data[range.clone()]),
			NodeHandlePlan::Inline(range) => NodeHandle::Inline(&data[range.clone()]),
		}
	}
}

/// A `NibbleSlicePlan` is a blueprint for decoding a nibble slice from a byte slice. The
/// `NibbleSlicePlan` is created by parsing a byte slice and can be reused multiple times.
#[derive(Eq, PartialEq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct NibbleSlicePlan {
	bytes: Range<usize>,
	offset: usize,
}

impl NibbleSlicePlan {
	/// Construct a nibble slice decode plan.
	pub fn new(bytes: Range<usize>, offset: usize) -> Self {
		NibbleSlicePlan {
			bytes,
			offset
		}
	}

	/// Returns the nibble length of the slice.
	pub fn len(&self) -> usize {
		(self.bytes.end - self.bytes.start) * nibble_ops::NIBBLE_PER_BYTE - self.offset
	}

	/// Build a nibble slice by decoding a byte slice according to the plan. It is the
	/// responsibility of the caller to ensure that the node plan was created for the argument
	/// data, otherwise the call may decode incorrectly or panic.
	pub fn build<'a, 'b>(&'a self, data: &'b [u8]) -> NibbleSlice<'b> {
		NibbleSlice::new_offset(&data[self.bytes.clone()], self.offset)
	}
}

/// A `NodePlan` is a blueprint for decoding a node from a byte slice. The `NodePlan` is created
/// by parsing an encoded node and can be reused multiple times. This is useful as a `Node` borrows
/// from a byte slice and this struct does not.
///
/// The enum values mirror those of `Node` except that instead of byte slices, this struct stores
/// ranges that can be used to index into a large byte slice.
#[derive(Eq, PartialEq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum NodePlan {
	/// Null trie node; could be an empty root or an empty branch entry.
	Empty,
	/// Leaf node; has a partial key plan and value.
	Leaf {
		partial: NibbleSlicePlan,
		value: Range<usize>,
	},
	/// Extension node; has a partial key plan and child data.
	Extension {
		partial: NibbleSlicePlan,
		child: NodeHandlePlan,
	},
	/// Branch node; has slice of child nodes (each possibly null)
	/// and an optional immediate node data.
	Branch {
		value: Option<Range<usize>>,
		children: [Option<NodeHandlePlan>; nibble_ops::NIBBLE_LENGTH],
	},
	/// Branch node with support for a nibble (when extension nodes are not used).
	NibbledBranch {
		partial: NibbleSlicePlan,
		value: Option<Range<usize>>,
		children: [Option<NodeHandlePlan>; nibble_ops::NIBBLE_LENGTH],
	},
}

impl NodePlan {
	/// Build a node by decoding a byte slice according to the node plan. It is the responsibility
	/// of the caller to ensure that the node plan was created for the argument data, otherwise the
	/// call may decode incorrectly or panic.
	pub fn build<'a, 'b>(&'a self, data: &'b [u8]) -> Node<'b> {
		match self {
			NodePlan::Empty => Node::Empty,
			NodePlan::Leaf { partial, value } =>
				Node::Leaf(partial.build(data), &data[value.clone()]),
			NodePlan::Extension { partial, child } =>
				Node::Extension(partial.build(data), child.build(data)),
			NodePlan::Branch { value, children } => {
				let mut child_slices = [None; nibble_ops::NIBBLE_LENGTH];
				for i in 0..nibble_ops::NIBBLE_LENGTH {
					child_slices[i] = children[i].as_ref().map(|child| child.build(data));
				}
				let value_slice = value.clone().map(|value| &data[value]);
				Node::Branch(child_slices, value_slice)
			},
			NodePlan::NibbledBranch { partial, value, children } => {
				let mut child_slices = [None; nibble_ops::NIBBLE_LENGTH];
				for i in 0..nibble_ops::NIBBLE_LENGTH {
					child_slices[i] = children[i].as_ref().map(|child| child.build(data));
				}
				let value_slice = value.clone().map(|value| &data[value]);
				Node::NibbledBranch(partial.build(data), child_slices, value_slice)
			},
		}
	}
}

/// An `OwnedNode` is an owned type from which a `Node` can be constructed which borrows data from
/// the `OwnedNode`. This is useful for trie iterators.
#[cfg_attr(feature = "std", derive(Debug))]
#[derive(PartialEq, Eq)]
pub struct OwnedNode<D: Borrow<[u8]>> {
	data: D,
	plan: NodePlan,
}

impl<D: Borrow<[u8]>> OwnedNode<D> {
	/// Construct an `OwnedNode` by decoding an owned data source according to some codec.
	pub fn new<C: NodeCodec>(data: D) -> Result<Self, C::Error> {
		let plan = C::decode_plan(data.borrow())?;
		Ok(OwnedNode { data, plan })
	}

	/// Returns a reference to the backing data.
	pub fn data(&self) -> &[u8] {
		self.data.borrow()
	}

	/// Returns a reference to the node decode plan.
	pub fn node_plan(&self) -> &NodePlan {
		&self.plan
	}

	/// Construct a `Node` by borrowing data from this struct.
	pub fn node(&self) -> Node {
		self.plan.build(self.data.borrow())
	}
}