1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/*! [`BitSlice`] view adapters for memory regions.
The [`&BitSlice`][`BitSlice`] type is a referential view over existing memory.
The inherent constructor functions are awkward to call, as they require function
syntax rather than method syntax, and must provide a token for the memory type
argument even though this is informed by the already-existing reference being
used.
This module provides an extension trait, [`BitView`], which provides methods on
many memory types (all [`BitRegister`] integers, and slices and arrays of them)
to construct [`BitSlice`] over those values.
In addition, the traits [`AsBits`] and [`AsBitsMut`] are analogues of [`AsRef`]
and [`AsMut`], respectively. These traits have a blanket implementation for all
`A: As{Ref,Mut}<[T: BitRegister]>`, so that any type that implements a view to a
suitable memory region automatically implements a view to that region’s bits.
These traits are distinct because [`BitView`] combines the im/mutable view
functions into one trait, and can provide specialized implementations with a
slight performance increase over the generic, but `AsBits{,Mut}` can fit in the
generic type system of any library without undue effort.
[`AsBits`]: crate::view::AsBits
[`AsBitsMut`]: crate::view::AsBitsMut
[`AsMut`]: core::convert::AsMut
[`AsRef`]: core::convert::AsRef
[`BitRegister`]: crate::mem::BitRegister
[`BitSlice`]: crate::slice::BitSlice
[`BitView`]: crate::view::BitView
!*/
use crate::{
mem::{
BitMemory,
BitRegister,
},
order::BitOrder,
ptr::BitPtr,
slice::{
from_raw_parts_unchecked,
from_raw_parts_unchecked_mut,
BitSlice,
},
store::BitStore,
};
/** Creates a [`BitSlice`] view over some type that supports it.
This trait is implemented on all [`BitRegister`] types, and the arrays and slices
of them that are supported by the standard library.
This means that until type-level integers are stabilized, only arrays in
`[T: BitRegister; 0 ..= 64]` will implement the trait; wider arrays will need to
reborrow as slices `[T]` in order to use the slice implementation.
If you have a type that contains a [`BitRegister`] type that can be viewed with
this trait, then you can implement this trait by forwarding to the interior
view.
[`BitSlice`]: crate::slice::BitSlice
[`BitRegister`]: crate::mem::BitRegister
**/
pub trait BitView {
/// The region’s storage type.
type Store: BitStore;
/// Views a memory region as a [`BitSlice`].
///
/// # Type Parameters
///
/// - `O`: The bit ordering used for the region.
///
/// # Parameters
///
/// - `&self`: The region to view as individual bits.
///
/// # Returns
///
/// A `&BitSlice` view over the region at `*self`.
///
/// [`BitSlice`]: crate::slice::BitSlice
fn view_bits<O>(&self) -> &BitSlice<O, Self::Store>
where O: BitOrder;
/// Views a memory region as a mutable [`BitSlice`].
///
/// # Type Parameters
///
/// - `O`: The bit ordering used for the region.
///
/// # Parameters
///
/// - `&mut self`: The region to view as individual mutable bits.
///
/// # Returns
///
/// A `&mut BitSlice` view over the region at `*self`.
///
/// [`BitSlice`]: crate::slice::BitSlice
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<O, Self::Store>
where O: BitOrder;
/// Produces the number of bits that the implementing type can hold.
#[doc(hidden)]
#[inline]
fn const_bits() -> usize
where Self: Sized {
Self::const_elts()
* <<Self::Store as BitStore>::Mem as BitMemory>::BITS as usize
}
/// Produces the number of memory elements that the implementing type holds.
#[doc(hidden)]
fn const_elts() -> usize
where Self: Sized;
}
#[cfg(not(tarpaulin_include))]
impl<T> BitView for T
where T: BitStore
{
type Store = T;
#[inline(always)]
fn view_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder {
BitSlice::from_element(self)
}
#[inline(always)]
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder {
BitSlice::from_element_mut(self)
}
#[doc(hidden)]
#[inline(always)]
fn const_elts() -> usize {
1
}
}
impl<T> BitView for [T]
where T: BitStore
{
type Store = T;
#[inline]
fn view_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder {
BitSlice::from_slice(self).expect("slice was too long to view as bits")
}
#[inline]
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder {
BitSlice::from_slice_mut(self)
.expect("slice was too long to view as bits")
}
/// Slices cannot implement this function.
#[cold]
#[doc(hidden)]
#[inline(never)]
fn const_elts() -> usize {
unreachable!("This cannot be called on unsized slices")
}
}
#[cfg(not(tarpaulin_include))]
impl<T> BitView for [T; 0]
where T: BitStore
{
type Store = T;
#[inline(always)]
fn view_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder {
BitSlice::empty()
}
#[inline(always)]
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder {
BitSlice::empty_mut()
}
#[doc(hidden)]
fn const_elts() -> usize {
0
}
}
// Replace with a const-generic once that becomes available.
macro_rules! view_bits {
($($n:expr),+ $(,)?) => { $(
impl<T> BitView for [T; $n]
where T: BitStore {
type Store = T;
#[inline]
fn view_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder {
unsafe { from_raw_parts_unchecked(
BitPtr::from_slice(&self[..]),
$n * T::Mem::BITS as usize,
) }
}
#[inline]
fn view_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder {
unsafe { from_raw_parts_unchecked_mut(
BitPtr::from_mut_slice(&mut self[..]),
$n * T::Mem::BITS as usize,
) }
}
#[doc(hidden)]
#[inline(always)]
#[cfg(not(tarpaulin_include))]
fn const_elts() -> usize {
$n
}
}
)+ };
}
view_bits!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64
);
/** Views a region as an immutable [`BitSlice`] only.
This trait is an analogue to the [`AsRef`] trait, in that it enables any type to
provide an immutable-only view of a bit slice.
It does not require an `AsRef<[T: BitStore]>` implementation, and a blanket
implementation for all such types is provided. This allows you to choose whether
to implement only one of `AsBits<T>` or `AsRef<[T]>`, and gain a [`BitSlice`]
view with either choice.
# Type Parameters
- `T`: The underlying storage region.
# Notes
You are not *forbidden* from creating multiple views with different element
types to the same region, but doing so is likely to cause inconsistent and
surprising behavior.
Refrain from implementing this trait with more than one storage argument unless
you are sure that you can uphold the memory region requirements of all of them,
and are aware of the behavior conflicts that may arise.
[`AsRef`]: core::convert::AsRef
[`BitSlice`]: crate::slice::BitSlice
**/
pub trait AsBits<T>
where T: BitStore
{
/// Views memory as a slice of immutable bits.
///
/// # Type Parameters
///
/// - `O`: The bit ordering used for the region.
///
/// # Parameters
///
/// - `&self`: The value that is providing a [`BitSlice`] view.
///
/// # Returns
///
/// An immutable view into some bits.
///
/// [`BitSlice`]: crate::slice::BitSlice
fn as_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder;
}
/** Views a region as a mutable [`BitSlice`].
This trait is an analogue to the [`AsMut`] trait, in that it enables any type to
provide a mutable view of a bit slice.
It does not require an `AsMut<[T: BitStore]>` implementation, and a blanket
implementation for all such types is provided. This allows you to choose whether
to implement only one of `AsBitsMut<T>` or `AsMut<[T]>`, and gain a [`BitSlice`]
view with either choice.
# Type Parameters
- `T`: The underlying storage region.
# Notes
You are not *forbidden* from creating multiple views with different element
types to the same region, but doing so is likely to cause inconsistent and
surprising behavior.
Refrain from implementing this trait with more than one storage argument unless
you are sure that you can uphold the memory region requirements of all of them,
and are aware of the behavior conflicts that may arise.
[`AsMut`]: core::convert::AsMut
[`BitSlice`]: crate::slice::BitSlice
**/
pub trait AsBitsMut<T>
where T: BitStore
{
/// Views memory as a slice of mutable bits.
///
/// # Type Parameters
///
/// - `O`: The bit ordering used for the region.
///
/// # Parameters
///
/// - `&mut self`: The value that is providing a [`BitSlice`] view.
///
/// # Returns
///
/// A mutable view into some bits.
///
/// [`BitSlice`]: crate::slice::BitSlice
fn as_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder;
}
#[cfg(not(tarpaulin_include))]
impl<A, T> AsBits<T> for A
where
A: AsRef<[T]>,
T: BitStore + BitRegister,
{
#[inline]
fn as_bits<O>(&self) -> &BitSlice<O, T>
where O: BitOrder {
self.as_ref().view_bits::<O>()
}
}
#[cfg(not(tarpaulin_include))]
impl<A, T> AsBitsMut<T> for A
where
A: AsMut<[T]>,
T: BitStore + BitRegister,
{
#[inline]
fn as_bits_mut<O>(&mut self) -> &mut BitSlice<O, T>
where O: BitOrder {
self.as_mut().view_bits_mut::<O>()
}
}
#[cfg(test)]
mod tests {
use crate::prelude::*;
#[test]
fn impls() {
let mut byte = 0u8;
let mut bytes = [0u8; 2];
assert!(byte.view_bits::<LocalBits>().not_any());
assert!(byte.view_bits_mut::<LocalBits>().not_any());
assert!(bytes.view_bits::<LocalBits>().not_any());
assert!(bytes.view_bits_mut::<LocalBits>().not_any());
assert!(bytes[..].view_bits::<LocalBits>().not_any());
assert!(bytes[..].view_bits_mut::<LocalBits>().not_any());
let mut blank: [u8; 0] = [];
assert!(blank.view_bits::<LocalBits>().is_empty());
assert!(blank.view_bits_mut::<LocalBits>().is_empty());
assert_eq!(<u8 as BitView>::const_bits(), 8);
assert_eq!(<u16 as BitView>::const_bits(), 16);
assert_eq!(<u32 as BitView>::const_bits(), 32);
#[cfg(target_pointer_width = "64")]
{
assert_eq!(<u64 as BitView>::const_bits(), 64);
}
}
}