1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
use alloc::sync::{Arc, Weak};
use core::cell::UnsafeCell;
use core::sync::atomic::Ordering::{self, SeqCst};
use core::sync::atomic::{AtomicBool, AtomicPtr};

use super::abort::abort;
use super::ReadyToRunQueue;
use crate::task::{waker_ref, ArcWake, WakerRef};

pub(super) struct Task<Fut> {
    // The future
    pub(super) future: UnsafeCell<Option<Fut>>,

    // Next pointer for linked list tracking all active tasks (use
    // `spin_next_all` to read when access is shared across threads)
    pub(super) next_all: AtomicPtr<Task<Fut>>,

    // Previous task in linked list tracking all active tasks
    pub(super) prev_all: UnsafeCell<*const Task<Fut>>,

    // Length of the linked list tracking all active tasks when this node was
    // inserted (use `spin_next_all` to synchronize before reading when access
    // is shared across threads)
    pub(super) len_all: UnsafeCell<usize>,

    // Next pointer in ready to run queue
    pub(super) next_ready_to_run: AtomicPtr<Task<Fut>>,

    // Queue that we'll be enqueued to when woken
    pub(super) ready_to_run_queue: Weak<ReadyToRunQueue<Fut>>,

    // Whether or not this task is currently in the ready to run queue
    pub(super) queued: AtomicBool,
}

// `Task` can be sent across threads safely because it ensures that
// the underlying `Fut` type isn't touched from any of its methods.
//
// The parent (`super`) module is trusted not to access `future`
// across different threads.
unsafe impl<Fut> Send for Task<Fut> {}
unsafe impl<Fut> Sync for Task<Fut> {}

impl<Fut> ArcWake for Task<Fut> {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        let inner = match arc_self.ready_to_run_queue.upgrade() {
            Some(inner) => inner,
            None => return,
        };

        // It's our job to enqueue this task it into the ready to run queue. To
        // do this we set the `queued` flag, and if successful we then do the
        // actual queueing operation, ensuring that we're only queued once.
        //
        // Once the task is inserted call `wake` to notify the parent task,
        // as it'll want to come along and run our task later.
        //
        // Note that we don't change the reference count of the task here,
        // we merely enqueue the raw pointer. The `FuturesUnordered`
        // implementation guarantees that if we set the `queued` flag that
        // there's a reference count held by the main `FuturesUnordered` queue
        // still.
        let prev = arc_self.queued.swap(true, SeqCst);
        if !prev {
            inner.enqueue(&**arc_self);
            inner.waker.wake();
        }
    }
}

impl<Fut> Task<Fut> {
    /// Returns a waker reference for this task without cloning the Arc.
    pub(super) fn waker_ref(this: &Arc<Self>) -> WakerRef<'_> {
        waker_ref(this)
    }

    /// Spins until `next_all` is no longer set to `pending_next_all`.
    ///
    /// The temporary `pending_next_all` value is typically overwritten fairly
    /// quickly after a node is inserted into the list of all futures, so this
    /// should rarely spin much.
    ///
    /// When it returns, the correct `next_all` value is returned.
    ///
    /// `Relaxed` or `Acquire` ordering can be used. `Acquire` ordering must be
    /// used before `len_all` can be safely read.
    #[inline]
    pub(super) fn spin_next_all(
        &self,
        pending_next_all: *mut Self,
        ordering: Ordering,
    ) -> *const Self {
        loop {
            let next = self.next_all.load(ordering);
            if next != pending_next_all {
                return next;
            }
        }
    }
}

impl<Fut> Drop for Task<Fut> {
    fn drop(&mut self) {
        // Since `Task<Fut>` is sent across all threads for any lifetime,
        // regardless of `Fut`, we, to guarantee memory safety, can't actually
        // touch `Fut` at any time except when we have a reference to the
        // `FuturesUnordered` itself .
        //
        // Consequently it *should* be the case that we always drop futures from
        // the `FuturesUnordered` instance. This is a bomb, just in case there's
        // a bug in that logic.
        unsafe {
            if (*self.future.get()).is_some() {
                abort("future still here when dropping");
            }
        }
    }
}