1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
// This module provides an NFA compiler using Thompson's construction
// algorithm. The compiler takes a regex-syntax::Hir as input and emits an NFA
// graph as output. The NFA graph is structured in a way that permits it to be
// executed by a virtual machine and also used to efficiently build a DFA.
//
// The compiler deals with a slightly expanded set of NFA states that notably
// includes an empty node that has exactly one epsilon transition to the next
// state. In other words, it's a "goto" instruction if one views Thompson's NFA
// as a set of bytecode instructions. These goto instructions are removed in
// a subsequent phase before returning the NFA to the caller. The purpose of
// these empty nodes is that they make the construction algorithm substantially
// simpler to implement. We remove them before returning to the caller because
// they can represent substantial overhead when traversing the NFA graph
// (either while searching using the NFA directly or while building a DFA).
//
// In the future, it would be nice to provide a Glushkov compiler as well,
// as it would work well as a bit-parallel NFA for smaller regexes. But
// the Thompson construction is one I'm more familiar with and seems more
// straight-forward to deal with when it comes to large Unicode character
// classes.
//
// Internally, the compiler uses interior mutability to improve composition
// in the face of the borrow checker. In particular, we'd really like to be
// able to write things like this:
//
//     self.c_concat(exprs.iter().map(|e| self.c(e)))
//
// Which elegantly uses iterators to build up a sequence of compiled regex
// sub-expressions and then hands it off to the concatenating compiler
// routine. Without interior mutability, the borrow checker won't let us
// borrow `self` mutably both inside and outside the closure at the same
// time.

use std::cell::RefCell;
use std::mem;

use regex_syntax::hir::{self, Hir, HirKind};
use regex_syntax::utf8::{Utf8Range, Utf8Sequences};

use classes::ByteClassSet;
use error::{Error, Result};
use nfa::map::{Utf8BoundedMap, Utf8SuffixKey, Utf8SuffixMap};
use nfa::range_trie::RangeTrie;
use nfa::{State, StateID, Transition, NFA};

/// Config knobs for the NFA compiler. See the builder's methods for more
/// docs on each one.
#[derive(Clone, Copy, Debug)]
struct Config {
    anchored: bool,
    allow_invalid_utf8: bool,
    reverse: bool,
    shrink: bool,
}

impl Default for Config {
    fn default() -> Config {
        Config {
            anchored: false,
            allow_invalid_utf8: false,
            reverse: false,
            shrink: true,
        }
    }
}

/// A builder for compiling an NFA.
#[derive(Clone, Debug)]
pub struct Builder {
    config: Config,
}

impl Builder {
    /// Create a new NFA builder with its default configuration.
    pub fn new() -> Builder {
        Builder { config: Config::default() }
    }

    /// Compile the given high level intermediate representation of a regular
    /// expression into an NFA.
    ///
    /// If there was a problem building the NFA, then an error is returned.
    /// For example, if the regex uses unsupported features (such as zero-width
    /// assertions), then an error is returned.
    pub fn build(&self, expr: &Hir) -> Result<NFA> {
        let mut nfa = NFA::always_match();
        self.build_with(&mut Compiler::new(), &mut nfa, expr)?;
        Ok(nfa)
    }

    /// Compile the given high level intermediate representation of a regular
    /// expression into the NFA given using the given compiler. Callers may
    /// prefer this over `build` if they would like to reuse allocations while
    /// compiling many regular expressions.
    ///
    /// On success, the given NFA is completely overwritten with the NFA
    /// produced by the compiler.
    ///
    /// If there was a problem building the NFA, then an error is returned. For
    /// example, if the regex uses unsupported features (such as zero-width
    /// assertions), then an error is returned. When an error is returned,
    /// the contents of `nfa` are unspecified and should not be relied upon.
    /// However, it can still be reused in subsequent calls to this method.
    pub fn build_with(
        &self,
        compiler: &mut Compiler,
        nfa: &mut NFA,
        expr: &Hir,
    ) -> Result<()> {
        compiler.clear();
        compiler.configure(self.config);
        compiler.compile(nfa, expr)
    }

    /// Set whether matching must be anchored at the beginning of the input.
    ///
    /// When enabled, a match must begin at the start of the input. When
    /// disabled, the NFA will act as if the pattern started with a `.*?`,
    /// which enables a match to appear anywhere.
    ///
    /// By default this is disabled.
    pub fn anchored(&mut self, yes: bool) -> &mut Builder {
        self.config.anchored = yes;
        self
    }

    /// When enabled, the builder will permit the construction of an NFA that
    /// may match invalid UTF-8.
    ///
    /// When disabled (the default), the builder is guaranteed to produce a
    /// regex that will only ever match valid UTF-8 (otherwise, the builder
    /// will return an error).
    pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
        self.config.allow_invalid_utf8 = yes;
        self
    }

    /// Reverse the NFA.
    ///
    /// A NFA reversal is performed by reversing all of the concatenated
    /// sub-expressions in the original pattern, recursively. The resulting
    /// NFA can be used to match the pattern starting from the end of a string
    /// instead of the beginning of a string.
    ///
    /// Reversing the NFA is useful for building a reverse DFA, which is most
    /// useful for finding the start of a match.
    pub fn reverse(&mut self, yes: bool) -> &mut Builder {
        self.config.reverse = yes;
        self
    }

    /// Apply best effort heuristics to shrink the NFA at the expense of more
    /// time/memory.
    ///
    /// This is enabled by default. Generally speaking, if one is using an NFA
    /// to compile DFA, then the extra time used to shrink the NFA will be
    /// more than made up for during DFA construction (potentially by a lot).
    /// In other words, enabling this can substantially decrease the overall
    /// amount of time it takes to build a DFA.
    ///
    /// The only reason to disable this if you want to compile an NFA and start
    /// using it as quickly as possible without needing to build a DFA.
    pub fn shrink(&mut self, yes: bool) -> &mut Builder {
        self.config.shrink = yes;
        self
    }
}

/// A compiler that converts a regex abstract syntax to an NFA via Thompson's
/// construction. Namely, this compiler permits epsilon transitions between
/// states.
///
/// Users of this crate cannot use a compiler directly. Instead, all one can
/// do is create one and use it via the
/// [`Builder::build_with`](struct.Builder.html#method.build_with)
/// method. This permits callers to reuse compilers in order to amortize
/// allocations.
#[derive(Clone, Debug)]
pub struct Compiler {
    /// The set of compiled NFA states. Once a state is compiled, it is
    /// assigned a state ID equivalent to its index in this list. Subsequent
    /// compilation can modify previous states by adding new transitions.
    states: RefCell<Vec<CState>>,
    /// The configuration from the builder.
    config: Config,
    /// State used for compiling character classes to UTF-8 byte automata.
    /// State is not retained between character class compilations. This just
    /// serves to amortize allocation to the extent possible.
    utf8_state: RefCell<Utf8State>,
    /// State used for arranging character classes in reverse into a trie.
    trie_state: RefCell<RangeTrie>,
    /// State used for caching common suffixes when compiling reverse UTF-8
    /// automata (for Unicode character classes).
    utf8_suffix: RefCell<Utf8SuffixMap>,
    /// A map used to re-map state IDs when translating the compiler's internal
    /// NFA state representation to the external NFA representation.
    remap: RefCell<Vec<StateID>>,
    /// A set of compiler internal state IDs that correspond to states that are
    /// exclusively epsilon transitions, i.e., goto instructions, combined with
    /// the state that they point to. This is used to record said states while
    /// transforming the compiler's internal NFA representation to the external
    /// form.
    empties: RefCell<Vec<(StateID, StateID)>>,
}

/// A compiler intermediate state representation for an NFA that is only used
/// during compilation. Once compilation is done, `CState`s are converted to
/// `State`s, which have a much simpler representation.
#[derive(Clone, Debug, Eq, PartialEq)]
enum CState {
    /// An empty state whose only purpose is to forward the automaton to
    /// another state via en epsilon transition. These are useful during
    /// compilation but are otherwise removed at the end.
    Empty { next: StateID },
    /// A state that only transitions to `next` if the current input byte is
    /// in the range `[start, end]` (inclusive on both ends).
    Range { range: Transition },
    /// A state with possibly many transitions, represented in a sparse
    /// fashion. Transitions are ordered lexicographically by input range.
    /// As such, this may only be used when every transition has equal
    /// priority. (In practice, this is only used for encoding large UTF-8
    /// automata.)
    Sparse { ranges: Vec<Transition> },
    /// An alternation such that there exists an epsilon transition to all
    /// states in `alternates`, where matches found via earlier transitions
    /// are preferred over later transitions.
    Union { alternates: Vec<StateID> },
    /// An alternation such that there exists an epsilon transition to all
    /// states in `alternates`, where matches found via later transitions
    /// are preferred over earlier transitions.
    ///
    /// This "reverse" state exists for convenience during compilation that
    /// permits easy construction of non-greedy combinations of NFA states.
    /// At the end of compilation, Union and UnionReverse states are merged
    /// into one Union type of state, where the latter has its epsilon
    /// transitions reversed to reflect the priority inversion.
    UnionReverse { alternates: Vec<StateID> },
    /// A match state. There is exactly one such occurrence of this state in
    /// an NFA.
    Match,
}

/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
pub struct ThompsonRef {
    start: StateID,
    end: StateID,
}

impl Compiler {
    /// Create a new compiler.
    pub fn new() -> Compiler {
        Compiler {
            states: RefCell::new(vec![]),
            config: Config::default(),
            utf8_state: RefCell::new(Utf8State::new()),
            trie_state: RefCell::new(RangeTrie::new()),
            utf8_suffix: RefCell::new(Utf8SuffixMap::new(1000)),
            remap: RefCell::new(vec![]),
            empties: RefCell::new(vec![]),
        }
    }

    /// Clear any memory used by this compiler such that it is ready to compile
    /// a new regex.
    ///
    /// It is preferrable to reuse a compiler if possible in order to reuse
    /// allocations.
    fn clear(&self) {
        self.states.borrow_mut().clear();
        // We don't need to clear anything else since they are cleared on
        // their own and only when they are used.
    }

    /// Configure this compiler from the builder's knobs.
    ///
    /// The compiler is always reconfigured by the builder before using it to
    /// build an NFA.
    fn configure(&mut self, config: Config) {
        self.config = config;
    }

    /// Convert the current intermediate NFA to its final compiled form.
    fn compile(&self, nfa: &mut NFA, expr: &Hir) -> Result<()> {
        nfa.anchored = self.config.anchored;

        let mut start = self.add_empty();
        if !nfa.anchored {
            let compiled = if self.config.allow_invalid_utf8 {
                self.c_unanchored_prefix_invalid_utf8()?
            } else {
                self.c_unanchored_prefix_valid_utf8()?
            };
            self.patch(start, compiled.start);
            start = compiled.end;
        }
        let compiled = self.c(&expr)?;
        let match_id = self.add_match();
        self.patch(start, compiled.start);
        self.patch(compiled.end, match_id);
        self.finish(nfa);
        Ok(())
    }

    /// Finishes the compilation process and populates the provide NFA with
    /// the final graph.
    fn finish(&self, nfa: &mut NFA) {
        let mut bstates = self.states.borrow_mut();
        let mut remap = self.remap.borrow_mut();
        remap.resize(bstates.len(), 0);
        let mut empties = self.empties.borrow_mut();
        empties.clear();

        // We don't reuse allocations here becuase this is what we're
        // returning.
        nfa.states.clear();
        let mut byteset = ByteClassSet::new();

        // The idea here is to convert our intermediate states to their final
        // form. The only real complexity here is the process of converting
        // transitions, which are expressed in terms of state IDs. The new
        // set of states will be smaller because of partial epsilon removal,
        // so the state IDs will not be the same.
        for (id, bstate) in bstates.iter_mut().enumerate() {
            match *bstate {
                CState::Empty { next } => {
                    // Since we're removing empty states, we need to handle
                    // them later since we don't yet know which new state this
                    // empty state will be mapped to.
                    empties.push((id, next));
                }
                CState::Range { ref range } => {
                    remap[id] = nfa.states.len();
                    byteset.set_range(range.start, range.end);
                    nfa.states.push(State::Range { range: range.clone() });
                }
                CState::Sparse { ref mut ranges } => {
                    remap[id] = nfa.states.len();

                    let ranges = mem::replace(ranges, vec![]);
                    for r in &ranges {
                        byteset.set_range(r.start, r.end);
                    }
                    nfa.states.push(State::Sparse {
                        ranges: ranges.into_boxed_slice(),
                    });
                }
                CState::Union { ref mut alternates } => {
                    remap[id] = nfa.states.len();

                    let alternates = mem::replace(alternates, vec![]);
                    nfa.states.push(State::Union {
                        alternates: alternates.into_boxed_slice(),
                    });
                }
                CState::UnionReverse { ref mut alternates } => {
                    remap[id] = nfa.states.len();

                    let mut alternates = mem::replace(alternates, vec![]);
                    alternates.reverse();
                    nfa.states.push(State::Union {
                        alternates: alternates.into_boxed_slice(),
                    });
                }
                CState::Match => {
                    remap[id] = nfa.states.len();
                    nfa.states.push(State::Match);
                }
            }
        }
        for &(empty_id, mut empty_next) in empties.iter() {
            // empty states can point to other empty states, forming a chain.
            // So we must follow the chain until the end, which must end at
            // a non-empty state, and therefore, a state that is correctly
            // remapped. We are guaranteed to terminate because our compiler
            // never builds a loop among empty states.
            while let CState::Empty { next } = bstates[empty_next] {
                empty_next = next;
            }
            remap[empty_id] = remap[empty_next];
        }
        for state in &mut nfa.states {
            state.remap(&remap);
        }
        // The compiler always begins the NFA at the first state.
        nfa.start = remap[0];
        nfa.byte_classes = byteset.byte_classes();
    }

    fn c(&self, expr: &Hir) -> Result<ThompsonRef> {
        match *expr.kind() {
            HirKind::Empty => {
                let id = self.add_empty();
                Ok(ThompsonRef { start: id, end: id })
            }
            HirKind::Literal(hir::Literal::Unicode(ch)) => {
                let mut buf = [0; 4];
                let it = ch
                    .encode_utf8(&mut buf)
                    .as_bytes()
                    .iter()
                    .map(|&b| Ok(self.c_range(b, b)));
                self.c_concat(it)
            }
            HirKind::Literal(hir::Literal::Byte(b)) => Ok(self.c_range(b, b)),
            HirKind::Class(hir::Class::Bytes(ref cls)) => {
                self.c_byte_class(cls)
            }
            HirKind::Class(hir::Class::Unicode(ref cls)) => {
                self.c_unicode_class(cls)
            }
            HirKind::Repetition(ref rep) => self.c_repetition(rep),
            HirKind::Group(ref group) => self.c(&*group.hir),
            HirKind::Concat(ref exprs) => {
                self.c_concat(exprs.iter().map(|e| self.c(e)))
            }
            HirKind::Alternation(ref exprs) => {
                self.c_alternation(exprs.iter().map(|e| self.c(e)))
            }
            HirKind::Anchor(_) => Err(Error::unsupported_anchor()),
            HirKind::WordBoundary(_) => Err(Error::unsupported_word()),
        }
    }

    fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef>
    where
        I: DoubleEndedIterator<Item = Result<ThompsonRef>>,
    {
        let first =
            if self.config.reverse { it.next_back() } else { it.next() };
        let ThompsonRef { start, mut end } = match first {
            Some(result) => result?,
            None => return Ok(self.c_empty()),
        };
        loop {
            let next =
                if self.config.reverse { it.next_back() } else { it.next() };
            let compiled = match next {
                Some(result) => result?,
                None => break,
            };
            self.patch(end, compiled.start);
            end = compiled.end;
        }
        Ok(ThompsonRef { start, end })
    }

    fn c_alternation<I>(&self, mut it: I) -> Result<ThompsonRef>
    where
        I: Iterator<Item = Result<ThompsonRef>>,
    {
        let first = it.next().expect("alternations must be non-empty")?;
        let second = match it.next() {
            None => return Ok(first),
            Some(result) => result?,
        };

        let union = self.add_union();
        let end = self.add_empty();
        self.patch(union, first.start);
        self.patch(first.end, end);
        self.patch(union, second.start);
        self.patch(second.end, end);
        for result in it {
            let compiled = result?;
            self.patch(union, compiled.start);
            self.patch(compiled.end, end);
        }
        Ok(ThompsonRef { start: union, end })
    }

    fn c_repetition(&self, rep: &hir::Repetition) -> Result<ThompsonRef> {
        match rep.kind {
            hir::RepetitionKind::ZeroOrOne => {
                self.c_zero_or_one(&rep.hir, rep.greedy)
            }
            hir::RepetitionKind::ZeroOrMore => {
                self.c_at_least(&rep.hir, rep.greedy, 0)
            }
            hir::RepetitionKind::OneOrMore => {
                self.c_at_least(&rep.hir, rep.greedy, 1)
            }
            hir::RepetitionKind::Range(ref rng) => match *rng {
                hir::RepetitionRange::Exactly(count) => {
                    self.c_exactly(&rep.hir, count)
                }
                hir::RepetitionRange::AtLeast(m) => {
                    self.c_at_least(&rep.hir, rep.greedy, m)
                }
                hir::RepetitionRange::Bounded(min, max) => {
                    self.c_bounded(&rep.hir, rep.greedy, min, max)
                }
            },
        }
    }

    fn c_bounded(
        &self,
        expr: &Hir,
        greedy: bool,
        min: u32,
        max: u32,
    ) -> Result<ThompsonRef> {
        let prefix = self.c_exactly(expr, min)?;
        if min == max {
            return Ok(prefix);
        }

        // It is tempting here to compile the rest here as a concatenation
        // of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
        // were `aaa?a?a?`. The problem here is that it leads to this program:
        //
        //     >000000: 61 => 01
        //     000001: 61 => 02
        //     000002: alt(03, 04)
        //     000003: 61 => 04
        //     000004: alt(05, 06)
        //     000005: 61 => 06
        //     000006: alt(07, 08)
        //     000007: 61 => 08
        //     000008: MATCH
        //
        // And effectively, once you hit state 2, the epsilon closure will
        // include states 3, 5, 5, 6, 7 and 8, which is quite a bit. It is
        // better to instead compile it like so:
        //
        //     >000000: 61 => 01
        //      000001: 61 => 02
        //      000002: alt(03, 08)
        //      000003: 61 => 04
        //      000004: alt(05, 08)
        //      000005: 61 => 06
        //      000006: alt(07, 08)
        //      000007: 61 => 08
        //      000008: MATCH
        //
        // So that the epsilon closure of state 2 is now just 3 and 8.
        let empty = self.add_empty();
        let mut prev_end = prefix.end;
        for _ in min..max {
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            let compiled = self.c(expr)?;
            self.patch(prev_end, union);
            self.patch(union, compiled.start);
            self.patch(union, empty);
            prev_end = compiled.end;
        }
        self.patch(prev_end, empty);
        Ok(ThompsonRef { start: prefix.start, end: empty })
    }

    fn c_at_least(
        &self,
        expr: &Hir,
        greedy: bool,
        n: u32,
    ) -> Result<ThompsonRef> {
        if n == 0 {
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            let compiled = self.c(expr)?;
            self.patch(union, compiled.start);
            self.patch(compiled.end, union);
            Ok(ThompsonRef { start: union, end: union })
        } else if n == 1 {
            let compiled = self.c(expr)?;
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            self.patch(compiled.end, union);
            self.patch(union, compiled.start);
            Ok(ThompsonRef { start: compiled.start, end: union })
        } else {
            let prefix = self.c_exactly(expr, n - 1)?;
            let last = self.c(expr)?;
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            self.patch(prefix.end, last.start);
            self.patch(last.end, union);
            self.patch(union, last.start);
            Ok(ThompsonRef { start: prefix.start, end: union })
        }
    }

    fn c_zero_or_one(&self, expr: &Hir, greedy: bool) -> Result<ThompsonRef> {
        let union =
            if greedy { self.add_union() } else { self.add_reverse_union() };
        let compiled = self.c(expr)?;
        let empty = self.add_empty();
        self.patch(union, compiled.start);
        self.patch(union, empty);
        self.patch(compiled.end, empty);
        Ok(ThompsonRef { start: union, end: empty })
    }

    fn c_exactly(&self, expr: &Hir, n: u32) -> Result<ThompsonRef> {
        let it = (0..n).map(|_| self.c(expr));
        self.c_concat(it)
    }

    fn c_byte_class(&self, cls: &hir::ClassBytes) -> Result<ThompsonRef> {
        let end = self.add_empty();
        let mut trans = Vec::with_capacity(cls.ranges().len());
        for r in cls.iter() {
            trans.push(Transition {
                start: r.start(),
                end: r.end(),
                next: end,
            });
        }
        Ok(ThompsonRef { start: self.add_sparse(trans), end })
    }

    fn c_unicode_class(&self, cls: &hir::ClassUnicode) -> Result<ThompsonRef> {
        // If all we have are ASCII ranges wrapped in a Unicode package, then
        // there is zero reason to bring out the big guns. We can fit all ASCII
        // ranges within a single sparse transition.
        if cls.is_all_ascii() {
            let end = self.add_empty();
            let mut trans = Vec::with_capacity(cls.ranges().len());
            for r in cls.iter() {
                assert!(r.start() <= '\x7F');
                assert!(r.end() <= '\x7F');
                trans.push(Transition {
                    start: r.start() as u8,
                    end: r.end() as u8,
                    next: end,
                });
            }
            Ok(ThompsonRef { start: self.add_sparse(trans), end })
        } else if self.config.reverse {
            if !self.config.shrink {
                // When we don't want to spend the extra time shrinking, we
                // compile the UTF-8 automaton in reverse using something like
                // the "naive" approach, but will attempt to re-use common
                // suffixes.
                self.c_unicode_class_reverse_with_suffix(cls)
            } else {
                // When we want to shrink our NFA for reverse UTF-8 automata,
                // we cannot feed UTF-8 sequences directly to the UTF-8
                // compiler, since the UTF-8 compiler requires all sequences
                // to be lexicographically sorted. Instead, we organize our
                // sequences into a range trie, which can then output our
                // sequences in the correct order. Unfortunately, building the
                // range trie is fairly expensive (but not nearly as expensive
                // as building a DFA). Hence the reason why the 'shrink' option
                // exists, so that this path can be toggled off.
                let mut trie = self.trie_state.borrow_mut();
                trie.clear();

                for rng in cls.iter() {
                    for mut seq in Utf8Sequences::new(rng.start(), rng.end()) {
                        seq.reverse();
                        trie.insert(seq.as_slice());
                    }
                }
                let mut utf8_state = self.utf8_state.borrow_mut();
                let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
                trie.iter(|seq| {
                    utf8c.add(&seq);
                });
                Ok(utf8c.finish())
            }
        } else {
            // In the forward direction, we always shrink our UTF-8 automata
            // because we can stream it right into the UTF-8 compiler. There
            // is almost no downside (in either memory or time) to using this
            // approach.
            let mut utf8_state = self.utf8_state.borrow_mut();
            let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
            for rng in cls.iter() {
                for seq in Utf8Sequences::new(rng.start(), rng.end()) {
                    utf8c.add(seq.as_slice());
                }
            }
            Ok(utf8c.finish())
        }

        // For reference, the code below is the "naive" version of compiling a
        // UTF-8 automaton. It is deliciously simple (and works for both the
        // forward and reverse cases), but will unfortunately produce very
        // large NFAs. When compiling a forward automaton, the size difference
        // can sometimes be an order of magnitude. For example, the '\w' regex
        // will generate about ~3000 NFA states using the naive approach below,
        // but only 283 states when using the approach above. This is because
        // the approach above actually compiles a *minimal* (or near minimal,
        // because of the bounded hashmap) UTF-8 automaton.
        //
        // The code below is kept as a reference point in order to make it
        // easier to understand the higher level goal here.
        /*
        let it = cls
            .iter()
            .flat_map(|rng| Utf8Sequences::new(rng.start(), rng.end()))
            .map(|seq| {
                let it = seq
                    .as_slice()
                    .iter()
                    .map(|rng| Ok(self.c_range(rng.start, rng.end)));
                self.c_concat(it)
            });
        self.c_alternation(it);
        */
    }

    fn c_unicode_class_reverse_with_suffix(
        &self,
        cls: &hir::ClassUnicode,
    ) -> Result<ThompsonRef> {
        // N.B. It would likely be better to cache common *prefixes* in the
        // reverse direction, but it's not quite clear how to do that. The
        // advantage of caching suffixes is that it does give us a win, and
        // has a very small additional overhead.
        let mut cache = self.utf8_suffix.borrow_mut();
        cache.clear();

        let union = self.add_union();
        let alt_end = self.add_empty();
        for urng in cls.iter() {
            for seq in Utf8Sequences::new(urng.start(), urng.end()) {
                let mut end = alt_end;
                for brng in seq.as_slice() {
                    let key = Utf8SuffixKey {
                        from: end,
                        start: brng.start,
                        end: brng.end,
                    };
                    let hash = cache.hash(&key);
                    if let Some(id) = cache.get(&key, hash) {
                        end = id;
                        continue;
                    }

                    let compiled = self.c_range(brng.start, brng.end);
                    self.patch(compiled.end, end);
                    end = compiled.start;
                    cache.set(key, hash, end);
                }
                self.patch(union, end);
            }
        }
        Ok(ThompsonRef { start: union, end: alt_end })
    }

    fn c_range(&self, start: u8, end: u8) -> ThompsonRef {
        let id = self.add_range(start, end);
        ThompsonRef { start: id, end: id }
    }

    fn c_empty(&self) -> ThompsonRef {
        let id = self.add_empty();
        ThompsonRef { start: id, end: id }
    }

    fn c_unanchored_prefix_valid_utf8(&self) -> Result<ThompsonRef> {
        self.c(&Hir::repetition(hir::Repetition {
            kind: hir::RepetitionKind::ZeroOrMore,
            greedy: false,
            hir: Box::new(Hir::any(false)),
        }))
    }

    fn c_unanchored_prefix_invalid_utf8(&self) -> Result<ThompsonRef> {
        self.c(&Hir::repetition(hir::Repetition {
            kind: hir::RepetitionKind::ZeroOrMore,
            greedy: false,
            hir: Box::new(Hir::any(true)),
        }))
    }

    fn patch(&self, from: StateID, to: StateID) {
        match self.states.borrow_mut()[from] {
            CState::Empty { ref mut next } => {
                *next = to;
            }
            CState::Range { ref mut range } => {
                range.next = to;
            }
            CState::Sparse { .. } => {
                panic!("cannot patch from a sparse NFA state")
            }
            CState::Union { ref mut alternates } => {
                alternates.push(to);
            }
            CState::UnionReverse { ref mut alternates } => {
                alternates.push(to);
            }
            CState::Match => {}
        }
    }

    fn add_empty(&self) -> StateID {
        let id = self.states.borrow().len();
        self.states.borrow_mut().push(CState::Empty { next: 0 });
        id
    }

    fn add_range(&self, start: u8, end: u8) -> StateID {
        let id = self.states.borrow().len();
        let trans = Transition { start, end, next: 0 };
        let state = CState::Range { range: trans };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_sparse(&self, ranges: Vec<Transition>) -> StateID {
        if ranges.len() == 1 {
            let id = self.states.borrow().len();
            let state = CState::Range { range: ranges[0] };
            self.states.borrow_mut().push(state);
            return id;
        }
        let id = self.states.borrow().len();
        let state = CState::Sparse { ranges };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_union(&self) -> StateID {
        let id = self.states.borrow().len();
        let state = CState::Union { alternates: vec![] };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_reverse_union(&self) -> StateID {
        let id = self.states.borrow().len();
        let state = CState::UnionReverse { alternates: vec![] };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_match(&self) -> StateID {
        let id = self.states.borrow().len();
        self.states.borrow_mut().push(CState::Match);
        id
    }
}

#[derive(Debug)]
struct Utf8Compiler<'a> {
    nfac: &'a Compiler,
    state: &'a mut Utf8State,
    target: StateID,
}

#[derive(Clone, Debug)]
struct Utf8State {
    compiled: Utf8BoundedMap,
    uncompiled: Vec<Utf8Node>,
}

#[derive(Clone, Debug)]
struct Utf8Node {
    trans: Vec<Transition>,
    last: Option<Utf8LastTransition>,
}

#[derive(Clone, Debug)]
struct Utf8LastTransition {
    start: u8,
    end: u8,
}

impl Utf8State {
    fn new() -> Utf8State {
        Utf8State { compiled: Utf8BoundedMap::new(5000), uncompiled: vec![] }
    }

    fn clear(&mut self) {
        self.compiled.clear();
        self.uncompiled.clear();
    }
}

impl<'a> Utf8Compiler<'a> {
    fn new(nfac: &'a Compiler, state: &'a mut Utf8State) -> Utf8Compiler<'a> {
        let target = nfac.add_empty();
        state.clear();
        let mut utf8c = Utf8Compiler { nfac, state, target };
        utf8c.add_empty();
        utf8c
    }

    fn finish(&mut self) -> ThompsonRef {
        self.compile_from(0);
        let node = self.pop_root();
        let start = self.compile(node);
        ThompsonRef { start, end: self.target }
    }

    fn add(&mut self, ranges: &[Utf8Range]) {
        let prefix_len = ranges
            .iter()
            .zip(&self.state.uncompiled)
            .take_while(|&(range, node)| {
                node.last.as_ref().map_or(false, |t| {
                    (t.start, t.end) == (range.start, range.end)
                })
            })
            .count();
        assert!(prefix_len < ranges.len());
        self.compile_from(prefix_len);
        self.add_suffix(&ranges[prefix_len..]);
    }

    fn compile_from(&mut self, from: usize) {
        let mut next = self.target;
        while from + 1 < self.state.uncompiled.len() {
            let node = self.pop_freeze(next);
            next = self.compile(node);
        }
        self.top_last_freeze(next);
    }

    fn compile(&mut self, node: Vec<Transition>) -> StateID {
        let hash = self.state.compiled.hash(&node);
        if let Some(id) = self.state.compiled.get(&node, hash) {
            return id;
        }
        let id = self.nfac.add_sparse(node.clone());
        self.state.compiled.set(node, hash, id);
        id
    }

    fn add_suffix(&mut self, ranges: &[Utf8Range]) {
        assert!(!ranges.is_empty());
        let last = self
            .state
            .uncompiled
            .len()
            .checked_sub(1)
            .expect("non-empty nodes");
        assert!(self.state.uncompiled[last].last.is_none());
        self.state.uncompiled[last].last = Some(Utf8LastTransition {
            start: ranges[0].start,
            end: ranges[0].end,
        });
        for r in &ranges[1..] {
            self.state.uncompiled.push(Utf8Node {
                trans: vec![],
                last: Some(Utf8LastTransition { start: r.start, end: r.end }),
            });
        }
    }

    fn add_empty(&mut self) {
        self.state.uncompiled.push(Utf8Node { trans: vec![], last: None });
    }

    fn pop_freeze(&mut self, next: StateID) -> Vec<Transition> {
        let mut uncompiled = self.state.uncompiled.pop().unwrap();
        uncompiled.set_last_transition(next);
        uncompiled.trans
    }

    fn pop_root(&mut self) -> Vec<Transition> {
        assert_eq!(self.state.uncompiled.len(), 1);
        assert!(self.state.uncompiled[0].last.is_none());
        self.state.uncompiled.pop().expect("non-empty nodes").trans
    }

    fn top_last_freeze(&mut self, next: StateID) {
        let last = self
            .state
            .uncompiled
            .len()
            .checked_sub(1)
            .expect("non-empty nodes");
        self.state.uncompiled[last].set_last_transition(next);
    }
}

impl Utf8Node {
    fn set_last_transition(&mut self, next: StateID) {
        if let Some(last) = self.last.take() {
            self.trans.push(Transition {
                start: last.start,
                end: last.end,
                next,
            });
        }
    }
}

#[cfg(test)]
mod tests {
    use regex_syntax::hir::Hir;
    use regex_syntax::ParserBuilder;

    use super::{Builder, State, StateID, Transition, NFA};

    fn parse(pattern: &str) -> Hir {
        ParserBuilder::new().build().parse(pattern).unwrap()
    }

    fn build(pattern: &str) -> NFA {
        Builder::new().anchored(true).build(&parse(pattern)).unwrap()
    }

    fn s_byte(byte: u8, next: StateID) -> State {
        let trans = Transition { start: byte, end: byte, next };
        State::Range { range: trans }
    }

    fn s_range(start: u8, end: u8, next: StateID) -> State {
        let trans = Transition { start, end, next };
        State::Range { range: trans }
    }

    fn s_sparse(ranges: &[(u8, u8, StateID)]) -> State {
        let ranges = ranges
            .iter()
            .map(|&(start, end, next)| Transition { start, end, next })
            .collect();
        State::Sparse { ranges }
    }

    fn s_union(alts: &[StateID]) -> State {
        State::Union { alternates: alts.to_vec().into_boxed_slice() }
    }

    fn s_match() -> State {
        State::Match
    }

    #[test]
    fn errors() {
        // unsupported anchors
        assert!(Builder::new().build(&parse(r"^")).is_err());
        assert!(Builder::new().build(&parse(r"$")).is_err());
        assert!(Builder::new().build(&parse(r"\A")).is_err());
        assert!(Builder::new().build(&parse(r"\z")).is_err());

        // unsupported word boundaries
        assert!(Builder::new().build(&parse(r"\b")).is_err());
        assert!(Builder::new().build(&parse(r"\B")).is_err());
        assert!(Builder::new().build(&parse(r"(?-u)\b")).is_err());
    }

    // Test that building an unanchored NFA has an appropriate `.*?` prefix.
    #[test]
    fn compile_unanchored_prefix() {
        // When the machine can only match valid UTF-8.
        let nfa = Builder::new().anchored(false).build(&parse(r"a")).unwrap();
        // There should be many states since the `.` in `.*?` matches any
        // Unicode scalar value.
        assert_eq!(11, nfa.len());
        assert_eq!(nfa.states[10], s_match());
        assert_eq!(nfa.states[9], s_byte(b'a', 10));

        // When the machine can match invalid UTF-8.
        let nfa = Builder::new()
            .anchored(false)
            .allow_invalid_utf8(true)
            .build(&parse(r"a"))
            .unwrap();
        assert_eq!(
            nfa.states,
            &[
                s_union(&[2, 1]),
                s_range(0, 255, 0),
                s_byte(b'a', 3),
                s_match(),
            ]
        );
    }

    #[test]
    fn compile_empty() {
        assert_eq!(build("").states, &[s_match(),]);
    }

    #[test]
    fn compile_literal() {
        assert_eq!(build("a").states, &[s_byte(b'a', 1), s_match(),]);
        assert_eq!(
            build("ab").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
        );
        assert_eq!(
            build("☃").states,
            &[s_byte(0xE2, 1), s_byte(0x98, 2), s_byte(0x83, 3), s_match(),]
        );

        // Check that non-UTF-8 literals work.
        let hir = ParserBuilder::new()
            .allow_invalid_utf8(true)
            .build()
            .parse(r"(?-u)\xFF")
            .unwrap();
        let nfa = Builder::new()
            .anchored(true)
            .allow_invalid_utf8(true)
            .build(&hir)
            .unwrap();
        assert_eq!(nfa.states, &[s_byte(b'\xFF', 1), s_match(),]);
    }

    #[test]
    fn compile_class() {
        assert_eq!(
            build(r"[a-z]").states,
            &[s_range(b'a', b'z', 1), s_match(),]
        );
        assert_eq!(
            build(r"[x-za-c]").states,
            &[s_sparse(&[(b'a', b'c', 1), (b'x', b'z', 1)]), s_match()]
        );
        assert_eq!(
            build(r"[\u03B1-\u03B4]").states,
            &[s_range(0xB1, 0xB4, 2), s_byte(0xCE, 0), s_match()]
        );
        assert_eq!(
            build(r"[\u03B1-\u03B4\u{1F919}-\u{1F91E}]").states,
            &[
                s_range(0xB1, 0xB4, 5),
                s_range(0x99, 0x9E, 5),
                s_byte(0xA4, 1),
                s_byte(0x9F, 2),
                s_sparse(&[(0xCE, 0xCE, 0), (0xF0, 0xF0, 3)]),
                s_match(),
            ]
        );
        assert_eq!(
            build(r"[a-z☃]").states,
            &[
                s_byte(0x83, 3),
                s_byte(0x98, 0),
                s_sparse(&[(b'a', b'z', 3), (0xE2, 0xE2, 1)]),
                s_match(),
            ]
        );
    }

    #[test]
    fn compile_repetition() {
        assert_eq!(
            build(r"a?").states,
            &[s_union(&[1, 2]), s_byte(b'a', 2), s_match(),]
        );
        assert_eq!(
            build(r"a??").states,
            &[s_union(&[2, 1]), s_byte(b'a', 2), s_match(),]
        );
    }

    #[test]
    fn compile_group() {
        assert_eq!(
            build(r"ab+").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[1, 3]), s_match(),]
        );
        assert_eq!(
            build(r"(ab)").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
        );
        assert_eq!(
            build(r"(ab)+").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[0, 3]), s_match(),]
        );
    }

    #[test]
    fn compile_alternation() {
        assert_eq!(
            build(r"a|b").states,
            &[s_byte(b'a', 3), s_byte(b'b', 3), s_union(&[0, 1]), s_match(),]
        );
        assert_eq!(
            build(r"|b").states,
            &[s_byte(b'b', 2), s_union(&[2, 0]), s_match(),]
        );
        assert_eq!(
            build(r"a|").states,
            &[s_byte(b'a', 2), s_union(&[0, 2]), s_match(),]
        );
    }
}